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Abstract

Genome-scale metabolic models give a great description of the organism at a gene-protein-reaction

associations level, and their main objective is to predict metabolic fluxes of a certain organism.

This can be done from a steady-state point of view, through a Flux Balance Analysis (FBA), or

from a time-varying perspective, through the use of a Dynamic Flux Balance Analysis (DFBA).

In 2014, a tool named DFBAlab was developed by Gómez, Höffner and Barton. This MATLAB-

based code provides a structured model of a biochemical process, where the environmental condi-

tions are taken into account to predict the microorganism’s dependency on the substrate concen-

trations. The uniqueness of this code relies on the using of lexicographic optimization and linear

programming (LP) feasibility problem, which means that in addition to prioritize the objective

functions (biomass, amino acids uptake, etc.), it sets the feasibility cost vector as the top priority

objective.

The organism of interest for this thesis was the Antarctic bacterium Pseudoalteromonas halo-

planktis TAC125 (PhTAC125), a strain of a gram-negative marine γ-proteobacteria. Such strains

thrive permanently in sea water at about -2°C to +4°C but are also anticipated to endure long term

frozen conditions when entrapped in the winter ice pack. PhTAC125 translational efficiency even

in cold condition and the consequently rapid growth justifies its increasing use in biotechnological

applications, such as high quality production of recombinant eukaryotic proteins.

The aim of this thesis was to build a dynamic genome-scale metabolic model, using DFBAlab

algorithm, that could describe PhTAC125’s growth on complex medium, particularly when having

19 amino acids as carbon sources, and its further application to study the production of recombi-

nant proteins.

In order to do this, recently obtained metabolomics data were used, and a broad fitting method

was developed to obtain the kinetic constants Vmax and Km, using several fitting algorithms and
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then comparing them through the use of Akaike’s Information Criterion. The kinetic constants were

used to implement the DFBAlab code and the results were qualitatively similar to the experimental

observations, i.e. the amino acids uptake order was the same in vitro than in silico. It is important

to say that the model was not sensible to six amino acids.

On the other hand, the dynamic model was used to study the production of recombinant protein

CDKL5. Given that the medium was different, new kinetic constants were obtained and DFBAlab

was implemented. The dynamic model qualitatively described the nutrients uptake and was able

to predict PhTAC125’s growth difference when producing the recombinant protein CDKL5 versus

when it is not.

In conclusion, the realization of the dynamic genome-scale metabolic model was succesfully

performed, it is able to describe the metabolic dynamics of PhTAC125, qualitatively matching

previous experimental data.
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Chapter 1

Introduction

1.1 Pseudoalteromonas haloplanktis TAC 125

The marine environment occupies three quarters of the Earth’s surface, which means that it is

home to a significant amount of biodiversity, hosting more living organisms, especially microor-

ganisms, than any other environment [1]. More than 70% of the marine surface experiments yearly

temperatures below 15°C [2], in fact polar regions account for another 15% of the Earth’s surface,

possessing unusual microbiotopes such as porous rocks in Antarctic dry valleys hosting micro-

bial communities surviving at -60°C. These circumstances make it necessary for life to develop a

remarkable adaptation to cold conditions [3].

This led to a deeper study of marine psychrophilic microorganisms (i.e. microorganisms growing

well at temperatures around the freezing point of water), whose ability to survive and proliferate

at low temperatures implies that they have overcome key barriers inherent to permanently cold

environments, such as reduced enzyme activity, decreased membrane fluidity, altered transport of

nutrients and waste products, decreased rates of transcription, translation and cell division, protein

cold-denaturation, to name a few [4].

In mesophilic organisms, the exposure to sudden temperature changes, both upshifts and down-

shifts, induces the over-expession of heat or cold-shock proteins, involved in transcription, transla-

tion, protein folding and the regulation of membrane fluidity [5], however, this cold-shock response

is different in psychrophilic microorganisms since there is a lack of repression of house-keeping

protein synthesis and the presence of cold-acclimation proteins (Caps). Many of the cold-shock

proteins observed in mesophiles act as Caps in psychrophiles, being constitutively rather than

transiently expressed at low temperatures [4].
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Amongst bacterial genera that can be isolated from the marine environment, one of the most

frequent is Pseudoalteromonas, a highly diffuse obligatory marine bacteria that are a subgroup of

Gram-negative γ-proteobacteria [1]. A typical representative is the bacterium Pseudoalteromonas

haloplanktis, and the strain TAC125 has been isolated from sea water sampled along the Antarc-

tic ice-shell. Such strains thrive permanently in sea water at about -2°C to +4°C but are also

anticipated to endure long term frozen conditions when entrapped in the winter ice pack [6].

P. haloplanktis TAC125 genome is made of two chromosomes, the replication origin of the first

chromosome (chrI) is found in a region that is highly conserved in γ-proteobacteria, unlike the

second chromosome (chrII) whose pattern is likely to be caused by unidirectional replication [1].

The genome of P. haloplanktis TAC125 contains 19 genes presumably coding for known RNA

binding proteins or RNA chaperones. However, this bacterium has several features that were not

expected, like the prominent absence of a RNA/nucleoid-associated cold-shock gene ubiquitous in

γ-proteobacteria, hns, which could mean that its activity was not enough to promote growth at

low temperatures. In addition, it was found one specific region in chrI coding for several calcium-

dependent proteins, as well as a specific gene in chrII that may regulate cell volume and resistance

to cold conditions. These findings are important since calcium is known to be involved in cold

adaptation and formation of exopolysaccharides in bacteria [1].

Psychrophilies like P. haloplanktis produce cold-adapted enzymes that have high specific ac-

tivities at low temperatures, often up to an order of magnitude higher than those observed for

their mesophilic counterparts, such as Erwinia chrysanthemi (Fig. 1.1). This enzymatic activity

is thought to adapt structural flexibility and kinetic properties to cope with the freezing effect

of the cold habitats [7]. One example could be the resistance to protein aging features involving

asparagine cyclization and deamidation, and the high number of rRNA and tRNA genes (106),

which might explain its translational efficiency even in cold condition and the consequently rapid

growth [1] [2]. This latter observation justifies an increasing use of P. haloplanktis in biotech-

nological applications, e.g. high quality production of recombinant eukaryotic proteins [1] such

as cyclin-dependent kinase-like (CDKL), present in various eukaryotas including humans. These

kinases have an essential role in signaling and development processes, hence they are relevant for

studying neurological disorders [8].

Another important characteristic of cold environments is the solubility of gases, especially

oxygen, which is increased at low temperatures while radicals are stabilized. As a consequence,

psychrophiles are exposed to higher concentrations of reactive oxygen species (ROS) [3]. How-

ever, P. haloplanktis TAC125 is remarkably well adapted to protection against ROS under these

conditions, a feature that could be very useful for expression of foreign proteins in the cold. For
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example, it lacks a series of activities that result in reactive oxygen species production (i.e. deletion

of ROS-producing metabolic pathways) and contemporaneously the direct use of dioxygen through

the presence of dioxygenases incorporating it into oxidized macromolecules [2] [3].

Figure 1.1: Thermodependence of enzymatic activity for the cold-adapted cellulase
from Pseudoalteromonas haloplanktis (blue) and its mesophilic homologue Erwinia

chrysanthemi (red). Adapted from [4].

In 2010, Piette et al. [3] performed a study to evaluate the optimal growth temperature of P.

haloplanktis TAC125 and compared it with that of the mesophile Escherichia coli. The former was

grown in a marine broth while the latter was grown in LB broth. Exponential growth was measured

through the doubling time of the bacterial population, being 4°C the optimal growth temperature

for TAC125, while E. coli failed to grow exponentially below 10°C (Fig. 1.2), the generation time

of P. haloplanktis is moderately increased when the culture temperature is decreased. This means

that reaction rates are less affected by a decrease in temperature as compared with mesophilic

enzymes.

In other words, high enzyme-catalysed reaction rates maintain metabolic fluxes and cellular

functions at low temperatures (as shown in figure 1.1), whereas the weak temperature dependence

of enzyme activity counteracts the effect of cold temperatures on biochemical reaction rates.

In order to work with P. haloplanktis TAC125, it was important to understand how it grew.
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Figure 1.2: Temperature–dependence of growth for P. haloplanktis and for the
mesophile E. coli. Solid lines are best-fit of the data to a single-exponential

equation. The dashed line indicate E. coli fails to grow exponentially below approx.
10°C. Figure from [3].

Marine bacteria live in a medium generally unbalanced in terms of carbon, nitrogen and phospho-

rous supply in sulfur sources, and since TAC125 is adapted to fast growth, this suggests that it

regularly encounters a fairly rich medium, probably due to the formation of a biofilm.

One interesting feature of P. haloplanktis is its lack of cAMP-CAP complex that regulates

carbon availability in related organisms such as vibrios and Shewanella, plus it does not possess a

phosphoenolpyruvate-dependent phosphotransferase system for the transport and first metabolic

step of carbohydrate degradation, explaining its lack of growth on glucose or related sugars [1].

Hence, this bacterium had to be adapted to grow on rich medium, as proved by Wilmes et al. in

2010 [9], where the growth was compared when cultivated on soy peptone versus casamino acids,

where P. haloplanktis grew exponentially with a constant growth rate. A mineral salt-based fed-

batch medium with casamino acids as a substrate (which had a different concentration of single

amino acids), was a suitable substrate for a high cell density cultivation of P. haloplanktis cells. The

amino acid analysis revealed glutamate, serine, threonine, aspartate and, if applicable, leucine as

potential limiting amino acids. But only glutamate turned out to be the preferred amino acid with

the highest influence on growth and thus is the most promising candidate as a highly concentrated

carbon and nitrogen source for a fed-batch feeding solution [9]. According to these data, there is
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a hierarchical use of carbon sources. Recent works have shown that P. haloplanktis can grow as

well in a L-glutamate, D-gluconate medium (GG) which allowed the bacterium not only to grow

at subzero temperatures, but the production of a recombinant protein. This result is being used to

further investigate some basic science issues and will be instrumental in the production of difficult

proteins [10].

1.2 Genome-scale metabolic modelling

Metabolism can be defined as the complete set of chemical reactions that occur in living organisms

in order to maintain life. Enzymes are the main players in this process as they are responsible

for catalyzing the chemical reactions. The enzyme–reaction relationships can be used for the

reconstruction of a network of reactions, which leads to a model of metabolism [11]. Such a model

must be predictive of events at the molecular scale and capable of explaining the high-level behavior

of the cell as a whole [12].

Genome-scale metabolic models (GEMs) computationally describe gene-protein-reaction (GPR)

associations for entire metabolic genes in an organism, and can be simulated to predict metabolic

fluxes for various systems-level metabolic studies [13]. The first step is to build the metabolic

networks, which are primarily reconstructed from the information that is present in their genome

and in the literature, involving steps such as functional annotation of the genome, assignment of

gene and reaction localization, determination of the biomass composition, estimation of energy

requirements, definition of model constraints, identification of the associated reactions and de-

termination of their stoichiometry [14] [11] [15]. Establishing a set of the biochemical reactions

that constitute a reaction network in the target organism culminates in a data-base of chemical

equations. Reactions are then organized into pathways, pathways into sectors (such as amino acid

synthesis), and ultimately into genome-scale networks (Fig. 1.3); thus, network reconstructions

represent an organized process for genome-scale assembly of disparate information about a target

organism [15].

The next step is to mathematically represent the network reconstruction. This conversion

translates a reconstructed network into a chemically accurate mathematical format that becomes

the basis for a genome-scale model, i.e. the mathematical representation of metabolic reac-

tions [15]. Hence, it is employed a stoichiometric matrix (S matrix) to represent all the coefficients

in metabolic reactions where the ij th element represents the stoichiometric coefficient of the ith

metabolite in the j th reaction in the GEM (Fig. 1.4a). If the coefficient is positive, the metabolite

is produced; otherwise, it is consumed [16].
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Figure 1.3: Information required for the network reconstruction process. Figure
from [15].

The matrix of stoichiometries imposes flux balance constraints on the network, ensuring that

the total amount of any compound being produced must be equal to the total amount being

consumed at steady state. The flux vector, a mathematical object, is a list of all such flux values

for a single point in the space, and represents a “state” of the network that is directly related

to the physiological function that the network produces [15], these vectors are being constrained

by upper an lower bounds that will allow the model to be representative and have a solution

space (Fig. 1.4b). The challenges in constraint-based modelling lie in identifying and imposing the

necessary and dominant constraints to define this solution space, as well as in probing the solution

space in a manner such that physiologically relevant fluxes or phenotypes are determined [17].

Finally, there can be different approaches, those that predict gene expression and those that use

gene expression data from a particular state to predict other phenotypes. The important feature

is that GEMs can predict gene expression with no previous input expression measurements: they

can compute protein abundances that are required to (optimally) achieve integrated physiological

functions. Since they are based on fundamental constraints and optimality principles, GEMs can

therefore be used to predict optimal expression and regulatory states [18].
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Figure 1.4: a. The stoichiometric matrix is constructed using the information
contained in the metabolic network. b. Imposition of constraints through the use of

upper and lower bounds for the flux vectors, the box is the solution space for the
GEM. Adapted from [17].

In 1999, a metabolic model of Haemophilus influenza became the first genome-scale metabolic

reconstruction to be published [19], and in the decades since, the field of genome-scale metabolic

network analysis has expanded so rapidly that it led to an exponential growth on the amount of

GEMs from 2009 to 2019 [14] [13]. In the figure 1.5 it can be seen a phylogenetic tree of all GEMs

reconstructed until 2019.

The GEMs for model organisms that have high scientific, industrial, and/or medical values have

been updated several times since their initial reconstruction as more relevant biological information

became available over the years. This is possible thanks to the up-to-date experimental information

on GPR associations and cell growth under various conditions (such as in gene knockouts or when

different carbon sources are used) [13].

The genome-scale metabolic model that concerns this study is the one constructed by Fondi

et al. in 2015 of Pseudoalteromonas haloplanktis TAC125 (iMF721), which was not only the first

one reconstructed for this bacterium, but it was the first one reconstructed so far for an Antarctic

microbial strain [20].
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Figure 1.5: A phylogenetic tree of all GEMs reconstructed until 2019 at the family
level. GEMs for 434, 40, and 117 taxonomic families of bacteria (light blue), archaea

(light purple), and eukarya (pink), respectively. Organism names are labeled
depending on the development methods used. Pseudoalteromonas haloplanktis, who

belongs to Pseudoalteromonadaceae family, is indicated in yellow. Adapted
from [13].
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The integration of expression data with functional modelling of Pseudoalteromonas haloplanktis

TAC125 metabolism presented in Fondi’s study has allowed the identification of possible metabolic

consequences derived from the re-modulation of gene expression in response to cold adaptation,

results that support and extend previous observations suggesting that this bacterium depresses

its general metabolism when grown at low temperature, in agreement with the reduced biomass

produced at 4°C [6] [20]. Hence, this model allows the study of variations in cellular metabolic

fluxes following a temperature downshift.

As said in the previous section, bacteria live in a wide range of environmental conditions that

change over time. In this sense, when facing a nutritionally rich environment, bacteria first use

the “preferred” compound(s) (presumably those allowing the fastest growth rate) and only later

start metabolizing the other one(s) [21]. This metabolic switch due to preferences is characteristic

of systems that optimize fitness [22]. It is usually observed that, as the bacterium changes from

one carbon source to another, growth is temporary halted, while a new set of enzymes needed to

metabolize alternative nutrients are synthesized, therefore, a small change in nutrient concentration

due, for example, to compounds exhaustion, may sometimes induce a large change in the enzymatic

composition of the bacterium. This was proven by Fondi et al. in 2016 [21], providing a scheme of

P. haloplanktis TAC125 metabolic re-programming that revealed a number of nutrients switches

in its metabolism when grown in a complex medium, consistent with the fact that this Antarctic

organism is adapted to fast growth in a fairly rich (but probably inconstant and highly competitive)

environment (plankton debris) [2]. This model highlighted the occurrence of such an adaption and

the need for reprogramming a large set of reactions to maintain an efficient metabolic network,

showing evident growth phases (diauxic or multi-auxic growth) [21] [23].

However, this scenario can be combined with the co-utilization of carbon sources. In 2020,

Perrin et al. [24] studied this case, showing that P. haloplanktis can use both strategies simul-

taneously when multiple possible nutrients are provided in the same growth experiment. This

conditions should always closely resemble the ones most found in nature. Hence, despite diauxie

and co-utilization strategies have been usually thought as conflicting phenotypes, they can coexist

in the same growth curve and give rise to a diversified ensemble of feeding strategies [24].

GEMs continue to play important roles in systems biology and metabolic engineering. Its

current applications include: designing metabolic engineering strategies such as system-wide pre-

diction of gene manipulation targets; biological discovery such as identification of gene functions

and prediction of microbial community-wide metabolic activities; and identification of drug tar-

gets in microbial pathogens [25]. Advances in the reconstruction and use of GEMs are largely

attributed to the greater availability of biological data and information, and to the establishment
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of automatic GEM reconstruction tools. Over time, they will become more powerful by incorporat-

ing additional biochemical information that will provide explanations of cellular processes beyond

metabolism. Nevertheless, various biochemical properties, such as enzyme–substrate interactions,

the structure of protein–protein complexes, and post-translational modification, still need to be

considered further [13].

1.3 FBA and DFBA

Flux balance analysis (FBA) is the most basic and commonly used method for studying biochemi-

cal networks, in particular the genome-scale metabolic network reconstructions [26]. GEMs contain

all of the known metabolic reactions in an organism and the genes that encode each enzyme, and

FBA calculates the flow of metabolites through this metabolic network, thereby making it pos-

sible to predict the growth rate of an organism or the rate of production of a biotechnologically

important metabolite [27].

FBA is a mathematical approach for analyzing the flow of metabolites through a metabolic

network that relies on an assumption of steady-state growth and mass balance (all mass that

enters the system must leave, in other words, the net sum of all the production and consumption

rates of each internal metabolite within a cell is considered to be zero) [20] [15]. It is based on

the stoichiometric metabolic matrix constructed for the model (Fig. 1.4a), however, they are

typically underdetermined because the number of reactions in the model is usually larger than the

number of metabolites. Therefore, in most cases, constraint-based analysis yields multiple feasible

flux solutions [28]. To narrow down the space of feasible solutions, every reaction can also be

given upper and lower bounds, which define the maximum and minimum allowable fluxes of the

reactions. These balances and bounds define the space of allowable flux distributions of a system

(1.4b), i.e. the rates at which every metabolite is consumed or produced by each reaction (e.g.

nutrient utilization) and maximization of biomass production [27] [29].

In addition to the application of constraints, an objective function is usually defined for identi-

fying biologically relevant flux solutions. The most commonly used objective function for FBA is

the biomass objective function (BOF), which is to maximize the efficiency of biomass production,

i.e. growth rate. This “biomass reaction” is basically a collection of all individual biomass con-

stituents together with their fractional contributions to the overall cellular biomass, and energetic

requirements for the biomass generation [28].

One of the most basic constraints imposed on genome-scale metabolic models is that of sub-

strate, or nutrient, availability and its uptake rate. Metabolites enter and leave the systems through
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what are termed “exchange reactions” (i.e. active or passive transport mechanisms). These re-

actions define the extracellular nutritional environment and are either left “open” (to allow a

substrate to enter the system at a specified rate) or “closed” (the substrate can only leave the

system) [15]. All these can be mathematically described by the set of linear equations:

dXi

dt
=

M∑
j=1

Sijvj = 0, ∀i ∈ N, ∀j ∈M (1.1)

Where Xi is the concentration of metabolite i, Sij is the stoichiometric coefficient of the ith

metabolite in the j th reaction, vj is the flux of the j th reaction, N the entire set of metabolites

and M the entire set of reactions. The upper and lower bounds of flux through each reaction act

as further constraints and are expressed as:

lb < vj < ub (1.2)

where lb and ub are the lower and upper limits for reaction j, respectively [20]. Finally, in

FBA, these equations are solved using linear programming to determine a feasible steady-state

flux vector that optimizes a given objective function. Many computational linear programming

algorithms exist, and they can very quickly identify optimal solutions to large systems of equations

(e.g. COBRA Toolbox [30], a freely available Matlab toolbox) [27] [20].

In summary, the steps of the FBA are illustrated in figure 1.6. First, a genome-scale metabolic

model must be reconstructed and the reactions set (Fig. 1.6 a). Then, the stoichiometric matrix

must be defined, including the information of the biomass and exchange reactions (Fig. 1.6b), this

matrix is multiplied by the flux vector, and since FBA relies on the assumption of steady state, the

flux through each reaction has to be zero (given by Sv), which defines a system of linear equations

(Eq. 1.1, Fig. 1.6c). As large models contain more reactions than metabolites, there is more than

one possible solution to these equations. In order to predict the maximum growth rate, it requires

defining an objective function Z = cT v (i.e. an inner product where c is a vector of weights

indicating how much each reaction (v) contributes to the objective function). In practice, when

only one reaction, such as biomass production, is desired for maximization or minimization, c is a

vector of zeros with a value of 1 at the position of the reaction of interest (Fig. 1.6d). Lastly, linear

programming (LP) is used to identify a flux distribution that maximizes or minimizes the objective

function within the space of allowable fluxes (blue region) defined by the constraints imposed by

the mass balance equations and reaction bounds, in figure 1.6e, the final solution is indicated as

the point of the optimal flux v [27].
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Figure 1.6: Flux balance analysis: a. GEM is reconstructed, an the reactions are
set. b. The stoichiometric matrix is defined, the biomass reaction (yellow column)
and exchange reactions (green columns) are incorporated. It is defined the fluxes as
well. c. At the steady state, the sum of the fluxes is 0. d. The objective function is
defined as a combination of all fluxes and their coefficients. e. Linear programming
is used to identify solution space of allowable fluxes (blue region). Figure from [27].

FBA has been extended to dynamic FBA (DFBA), which is applicable to time-varying pro-

cesses, such as batch or fed-batch cultures, and has significantly contributed to metabolic and

cultural engineering applications [31]. DFBA allows partial recovery of the dynamic information

lost under the conditions of the steady-state assumption (FBA), such as the metabolite concentra-

tions [32], and since DFBA is applied to systems involving cell growth, the theoretical maximum
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production concentrations and yields can be estimated under conditions closer to the production

process than FBA [31]. DFBA also permits the incorporation of kinetic expression when the ki-

netics are well characterized [32], which will allow the use of kinetic constants (Vmax and Km) in

this thesis, that will be previously calculated.

There are three possible approaches: Dynamic Optimization Approach (DOA), which involves

optimization over the entire time period of interest to obtain time profiles of fluxes and metabolite

levels, by solving a nonlinear programming problem (NLP) [32] [33]. In the Static Optimization

Approach (SOA), time is divided into discrete intervals and a new FBA problem is solved at

time ti after updating of the external conditions according to the FBA solution at time ti−1, and

performs the approximation of the dynamic response of a GEM to a changing environment [34],

this optimization problem is solved using LP repeatedly during the course of the batch to obtain

the flux distribution at a particular time instant [32]. Finally, the Direct Approach (DA) has been

proposed by including the LP solver in the right-hand side evaluator for the ordinary differential

equations (ODEs) [33]. Most of the published DFBA models use the SOA approach, which is

relatively simple to implement and not as computationally demanding [35].

Several algorithms have been developed to improve dynamic FBA, such as an extension of

DFBA by Succurro et al. in 2018 [34] and AdaptiveDFBA algorithm by Valverde et al. in

2019 [36]. However, the one that could address the needs of this thesis due to its lexicographic

optimization implementation was DFBAlab by Gómez et al. [33].

1.4 How DFBAlab was constructed

The Dynamic Flux Balance Analysis Laboratory (DFBAlab), developed at the Massachisetts Insti-

tute of Technology by José A. Gómez, Kai Höffner and Paul I. Barton in 2014 [33], is a MATLAB-

based code that provides a structured model of a biochemical process, where the environmental

conditions are taken into account to predict the microorganism’s dependency on the substrate

concentrations.

DFBAlab provides a solution to two major difficulties in existing implementations: nonunique

exchange fluxes in the solution vector of an LP and the LP becoming infeasible when evaluating the

ODE right-hand side close to the boundary of feasibility. In order to do that, DFBAlab implements

lexicographic optimization to obtain unique exchange fluxes and uses the LP feasibility problem

to avoid obtaining infeasible LPs while running the simulation. It uses linear program solvers such

as CPLEX [37], Gurobi [38] or MOSEK [39].

DFBAlab is mathematically defined as follows: let the vector X0 be the one that contains the
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initial concentrations of metabolites and biomass in a culture (it would be the initial vector from

equation 1.1), and if the study is evaluating more than one microorganism, it can be considered

ns as the number of microbial species in the culture.

x(t0) = x0,

ẋ(t) = f(t, h1(x(t)), . . . , hns(x(t))), ∀t ∈ (t0, tf ], (1.3)

Where f is the change function (due to exchange fluxes, feed and discharge rates from the

culture, mass transfer rates, etc.), whose rate can be obtained for each of the components of x.

This function f is integrated to find the concentration profiles with respect to time, x(t). Vector hk

is the one containing the exchange fluxes of species k, and is obtained by solving a linear program:

max (ck)T v, ∀v ∈ Rnk
r

Skv = 0, (1.4)

vklb(x(t)) ≤ v ≤ vkub(x(t)),

Where ck is the cost vector that maximizes growth fluxes, v the flux distribution, nkr are the

number of reactions in the metabolic network of species k, and vklb, v
k
lb are lower and upper bounds

as functions of the extracellular concentrations. Hence, the vector hk then takes the solution of

this linear program to find the values of the exchange fluxes, however the solution set v can be

nonunique and it could not be clear which flux distribution should hk take to carry-on with the

integration [33]. To fix this problem, Höffner et al. [40] used lexicographic optimization, a strategy

that enables obtaining unique exchange fluxes. This strategy requires defining an objective function

for each exchange flux of interest and these have to be ordered in a priority list [41]. The highest

priority objective is optimized first; then its optimum value is added as a constraint and the next

objective in priority is optimized, and so on. The first objective usually is the maximization of

biomass, however, this order must be provided by the user in the model description. By making

all the exchange fluxes that appear in the right-hand side of equation 1.3 optimization objectives

ordered by priority, unique exchange fluxes are obtained, these exchange fluxes change continuously

with respect to time and the integrator is able to carry-on integration reliably [33].

Nonetheless, DFBA simulators tend to have problems with LP in equation 1.4 for it may become

infeasible as time progresses. There are two situations where the LP may become infeasible:

1. The problem is truly infeasible, the solution fails and the integration should be terminated.
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2. The problem is not infeasible but the LP becomes infeasible while the numerical integrator

performs various operations to take a time step in equation 1.3.

An LP feasibility problem has two main characteristics: it is always feasible and its optimal

objective function value is zero if and only if the original LP is feasible (it could be identify as

infeasible). Since and LP feasibility problem can be constructed by adding some slack variables to

the constraints, Gómez et al. [33] implemented the LP formulation in equation 1.4 as the following

LP feasibility problem:

min

nk
q∑

i=1

S+i + s−i, ∀v ∈ Rnk
r , ∀s+, s− ∈ Rnk

q

Skv + s+−s− = 0, (1.5)

vklb(x(t)) ≤ v ≤ vkub(x(t)),

Where nkq are the number of metabolites in the metabolic network of species k, and Si the ith

row of S (stoichiometric matrix). When an LP is constructed in this form, a feasible solution is

obtained by finding a v that be delimited by its lower and upper bounds, and then letting:Sk
i v < 0 then s+i = −Sk

i v and s−i = 0

Sk
i v > 0 then s−i = −Sk

i v and s+i = 0
(1.6)

DFBAlab uses the LP feasibility problem (Eq. 1.5) instead of the standard form (Eq. 1.4) to

find the growth rates and exchange fluxes for each species in the culture. It sets the feasibility cost

vector as the top priority objective in the lexicographic optimization scheme. Then, the second-

priority linear program maximizes biomass and the subsequent lower-priority LPs obtain unique

exchange fluxes. It is important to say that it is provided a penalty function that can be useful for

optimization purposes. Only trajectories with penalty function value equal to zero (within some

tolerance) are feasible [33].
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Chapter 2

Motivation

Since the Antarctic strain Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is one of the

most important model organisms of cold-adapted bacteria that is currently being exploited as a

new alternative expression host for numerous biotechnological applications [20], the aim of this

thesis was to build a dynamic genome-scale metabolic model, using DFBAlab algorithm, that

could describe PhTAC125’s growth on complex medium, particularly when having 19 amino acids

as carbon sources (cysteine was not included in the list because of difficulties in its unambiguous

quantitation during the experiments due to its spontaneous oxidation [24]).

Furthermore, it was explored the model’s application to study the production of recombinant

proteins, such as CDKL5, which meant using a different experimental setup and a different simu-

lated growth medium. The workflow implied the comparison of experimental and simulated data

in order to evaluate the validity of the dynamic genome-scale metabolic model.
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Chapter 3

Methods

3.1 Workflow

Figure 3.1: Scheme of the workflow followed in this thesis.
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3.2 Softwares

• MATLAB combines a desktop environment tuned for iterative analysis and design processes

with a programming language that expresses matrix and array mathematics directly. It

includes the Live Editor for creating scripts that combine code, output, and formatted text

in an executable notebook [42].

• The COnstraint-Based Reconstruction and Analysis Toolbox (COBRA Toolbox) is a MAT-

LAB software suite for quantitative prediction of cellular and multicellular biochemical net-

works with constraint-based modelling. It implements a comprehensive collection of basic

and advanced modelling methods, including reconstruction and model generation as well as

biased and unbiased model-driven analysis methods, applicable to any biochemical system

with prior mechanistic information [30].

• Dynamic Flux Balance Analysis laboratory (DFBAlab) is a MATLAB-based code that per-

forms numerical integration of dynamic flux balance analysis (dFBA) systems. It provides

efficient simulation of multi-culture of microbial species based on genome-scale metabolic

network reconstructions for analysis, control and optimization of biochemical processes. As

such, it generates dynamic predictions of substrate, biomass, and product concentrations for

growth in batch or fed-batch cultures [33].

• Python is a programming language. It is used for many different applications such as an in-

troductory programming language, however it’s also used by professional software developers

at places such as Google, NASA, and Lucasfilm Ltd [43].

3.3 Fitting methods

3.3.1 MATLAB: lsqcurvefit

This method is a nonlinear least-squares solver whose objective is to find x that approaches the

most to the observed data. It simply provides a convenient interface for data-fitting problems, and

rather than compute the sum of squares, lsqcurvefit requires a user-defined function to compute the

vector-valued function [42], which in this case, it is the kinetic function (for differential equation

solving), described in the results.
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3.3.2 SIMPSA and SIMPLEXL

These two methods were used by Perrin et. al., 2020 [24] with the cybernetic modeling framework.

Since both of them use the same Objective function and Differential Equation System function, they

are embedded in the same MATLAB script. The only differences are the specifications SIMPSA

or SIMPLEXL needs.

SIMPSA is a method developed in 1997 by Cardoso et. al. [45], which is a simulated annealing

approach to non linear programming. This algorithm has the aim to find the solution for several

variables, but since in this work there are just two of them (i.e. the kinetic constants Vmax and

Km), the cool-rate was set < 1 for a slow convergence, finding just one point of convergence instead

of several points.

SIMPLEXL is an algorithm based on the traditional simplex method, developed by Dantzig in

1947, which was described for the minimization of a function of n variables [46] [47], however an

optimization was made by Aldo Buttini in 1993 (referenced in the code).

3.3.3 Python: SciPy optimize

This method consists on solving a differential equation system following the Michaelis-Menten-

Monod equation, and then using the least squares method to find the better fit, provided by the

minimize function included in the SciPy optimize package.

3.4 Assessing the quality of the fit

In order to compare the quality of each one of the fits, the points that describe the curves are

needed, and those values are calculated using the obtained parameters.

Once the values were ready to be compared, four statistical methods were considered, such

as Chi square, R square and Good of fitness (function by MATLAB). However, the Akaike’s

Information Criterion (AIC) was the chosen one because it provides a measure of model quality

obtained by comparing the exit of computing several different methods. AIC is a fined technique

based on in-sample fit to estimate the likelihood of a model to approximate certain values. This

maximum likelihood principle can most effectively be applied for the decision of the final estimate

of a finite parameter model when many alternative maximum likelihood estimates are obtained

corresponding to the various restrictions of the model [48]. According to Akaike’s theory, the most

accurate model has the smallest AIC (see table 4.6 for the results).
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Chapter 4

Results and Discussion

4.1 Kinetic constants: Vmax and Km

In order to perform a broad analysis of how Pseudoalteromonas haloplanktis uses 19 amino acids

as different carbon sources, the first step is to obtain the maximum velocity (Vmax) and Michaelis-

Menten constant (Km) for the nutrient uptake (kinetic constants).

Given the experimental data obtained from Perrin et al. [24], a fit was performed using the

Michaelis-Menten-Monod kinetics equation [44], an approach that takes into account the bacterial

growth while the carbon source diminishes:

dS

dt
=
−Vmax ∗ S ∗ (S0 +X0 − S)

(Km + S)
(4.1)

where S is the carbon source, S0 is the initial carbon source, dS/dt the change of the carbon

source throughout time and X0 is the initial population density. This equation is used for the

Kinetic function (kinetic fit mm2 ).

However, the initial population density was experimentally measured with the optical density

(OD) of the bacterial culture, and if this quantity is multiplied by 0,74 we obtain the biomass

in g/l [10]. In this sense, it was important to convert all concentration values from mM to g/l,

which was easily done by multiplying by the amino acid’s molecular weight and divide by 1000

(Table 4.1).

Since just one fitting method was not describing the correct behavior of each one of the amino

acids’ uptake, there were used four different methods and then, using a statistical test, compared

each one of them for every amino acid. The fitting methods were lsqcurvefit (a function by Matlab),
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SIMPSA (a function made by Cardoso et. al., 1997 [45]), SIMPLEXL (described by Dantzig [46]

and optimized by Aldo Buttini) and a function done with Python using the minimize function

(included in the SciPy optimize package) to compare the solution of the differential equation

system and the experimental data.

Amino acids MW (g/mol) Ci (mM) Ci (g/l)

Glutamate 147,13 0,2 0,029426
Glutamine 146,14 0,2 0,029228
Arginine 174,2 0,2 0,034840
Leucine 131,17 0,2 0,026234

Asparagine 132,12 0,2 0,026424
Aspartate 133,11 0,2 0,026622

Proline 115,13 0,2 0,023026
Valine 117,151 0,2 0,023430

Isoleucine 131,17 0,2 0,026234
Threonine 119,12 0,2 0,023824
Alanine 89,09 0,2 0,017818
Lysine 146,19 0,2 0,029238
Glycine 75,07 0,2 0,015014
Tyrosine 181,19 0,2 0,036238

Phenylalanine 165,19 0,2 0,033038
Serine 105,09 0,2 0,021018

Methionine 149,21 0,2 0,029842
Histidine 155,15 0,2 0,031031

Tryptophan 204,23 0,2 0,040846

Table 4.1: Amino acids initial concentration in mM and g/l
(Ci = Initial concentration; MW = molecular weight).

4.1.1 MATLAB: lsqcurvefit

Main

The code starts setting the initial values: vmax and km are estimated values of the kinetic

constants, while s0 and bm comes from the experimental data. The value s0 stands for the initial

amino acids’ concentrations and bm stands for biomass (g/l), which was calculated with the optical

density of bacterial culture (experimentally measured) multiplied by 0,74. The fitting was done

three times. The first time was done with the following estimated values for vmax and km:

1 vmax = [.1 .20 .2 .1 .2 .05 .1 .1 .25 .09 .05 .1 .2 .1 .05 .1 .08 .05 .05];
2 km = [1e−3 1e−5 1e−5 1e−6 1e−4 1e−3 1e−2 1e−4 1e−3 1e−3 1e−5 1e−3 1e−5 ...

1e−3 1e−4 1e−5 1e−7 1e−6 1e−2];
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The second time, the initial parameters were those obtained with the first fit, and the third

time, were those obtained with the second fit. So the code goes as follows:

1 %Fit for all the aa
2 clear all
3 close all
4

5 %%Setting initial values
6 file4 = readtable('Parameters2.xls','PreserveVariableNames',true);
7 %Vmax (g/h)
8 vmax = table2array(file4(:,2))';
9 %Km (g/l)

10 km = table2array(file4(:,3))';
11 %Initial concentration of amino acids (g/l)
12 s0 = [0.029426 0.029228 0.03484 0.026234 0.026424 0.026622 0.023026 ...

0.0234302 0.026234 0.02382384 0.017818 0.029238 0.015014 0.036238 ...
0.033038 0.021018 0.029842 0.031031 0.040846];

13 %Biomass (g/l)
14 bm = 0.1295*0.74;

The next step is to upload all the experimental data, such as amino acids’ concentrations (two

sets of data), transforming them from mM into g/l values, the optical density of bacterial growth

(transforming the od data to biomass) and obtain the mean values and error bars.

1 %%Load data: aa−mean
2 file1 = 'Figure4A rep1.txt';
3 file2 = 'Figure4A rep2.txt';
4 delimiterIn = ',';
5 headerlinesIn = 1;
6 A = importdata(file1,delimiterIn,headerlinesIn);
7 B = importdata(file2,delimiterIn,headerlinesIn);
8

9 % Molecular weight (for data loading and then ordered by clusters)
10 MW = 1e−3*[117.151 131.17 131.17 119.1192 89.09 147.13 146.14 149.21 ...

132.12 133.11 146.19 75.07 115.13 181.19 155.1546 204.23 165.19 ...
105.09 174.2];

11 MWaa = 1e−3*[147.13 146.14 174.2 131.17 132.12 133.11 115.13 117.151 ...
131.17 119.1192 89.09 146.19 75.07 181.19 165.19 105.09 149.21 ...
155.1546 204.23];

12

13 %19 aa−mean
14 val = (A.data(:,2)+B.data(:,2)).*MW(1)/2;
15 ile = (A.data(:,3)+B.data(:,3)).*MW(2)/2;
16 .
17 .
18 ser = (A.data(:,19)+B.data(:,19)).*MW(18)/2;
19 arg = (A.data(:,20)+B.data(:,20)).*MW(19)/2;
20

21 %Error bar
22 valsd = std([A.data(:,2) B.data(:,2)],0,2).*MW(1);
23 ilesd = std([A.data(:,3),B.data(:,3)],0,2).*MW(2);
24 .
25 .
26 sersd = std([A.data(:,19),B.data(:,19)],0,2).*MW(18);
27 argsd = std([A.data(:,20),B.data(:,20)],0,2).*MW(19);
28
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29 % Load data: OD mean and time
30 file3 = 'Figure4C.txt';
31 OD = importdata(file3,delimiterIn,headerlinesIn);
32 odm = (OD.data(:,2)+OD.data(:,3))/2;
33 BMm = odm * 0.74;
34

35 %Time
36 t = A.data(:,1);

Amino acids were ordered by clusters in the aa vector, following the degradation ordered

previously found by Perrin et al. [24]. The aaname an err vector are going to be used for plotting.

1 % This is the order by groups of aa
2 aa = {glu, gln, arg, leu, asn, asp, pro, val, ile, thr, ala, lys, gly, ...

tyr, phe, ser, met, his, trp};
3 aaname = ["Glutamate", "Glutamine", "Arginine", "Leucine", "Asparagine", ...

"Aspartate", "Proline", "Valine", "Isoleucine", "Threonine", ...
"Alanine", "Lysine", "Glycine", "Tyrosine", "Phenylalanine", ...
"Serine", "Methionine", "Histidine", "Tryptophan"];

4 err = {glusd, glnsd, argsd, leusd, asnsd, aspsd, prosd, valsd, ilesd, ...
thrsd, alasd, lyssd, glysd, tyrsd, phesd, sersd, metsd, hissd, trpsd};

Since the aim of this code is to find the kinetic constants for each amino acid, we build a table

full of zeros that will be filled with the final results (pall).

For the fitting part of the code, a for loop was used in order to fit the data for each amino acid

(k = 1:19). A reaction parameters vector was built with the initial values. A matrix containing

all the uploaded data and its upper and lower bounds were settled. All this elements are the inputs

of lsqcurvefit function, along with the @kinetic fit mm2 function (see its code bellow: Kinetic

function). A specific graphic was plotted for each iteration, saving it in one same figure using the

subplot function, and the kinetic constants were added to the pall table.

1 pall = zeros(19,2);
2

3 %%Fitting
4 for k = 1:19
5 reactionParameters = [vmax(k) km(k) s0(k) bm];
6 Data PC=[t t aa{k} BMm];
7 theta0=reactionParameters;
8 lb = [.01, 1e−5, s0(k), bm];
9 ub = [.3, 1, s0(k), bm];

10

11 [p,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]=lsqcurvefit
12 (@kinetic fit mm2,theta0,t,Data PC(:,3:4), lb, ub);
13

14 c = Data PC(:,2:3);
15 tv = linspace(min(Data PC(:,1)), max(Data PC(:,1)), length(t));
16 Cfit = kinetic fit mm2(p, tv)./MWaa(k);
17 %Plotting figures
18 figure(1);
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19 subplot(5,4,k);
20 plot(t,Cfit(:,1),'b'); title(aaname(k));
21 hold on
22 errorbar(t, c(:,2)./MWaa(k),err{k}./MWaa(k),'.b');
23

24 %Collecting Vmax and Km parameters
25 format long
26 pall(k,:) = p(1:2);
27 end

Finally, the image was customized with its correct axes (Fig. 4.1) and the table with the kinetic

constants (parameters) is saved as a .xls file (Tab. 4.2).

1 %%Naming the axes:
2 han=axes(figure(1),'visible','off');
3 han.Title.Visible='on';
4 han.XLabel.Visible='on';
5 han.YLabel.Visible='on';
6 ylabel(han,'\fontsize{14}Concentration (mM)');
7 xlabel(han,'\fontsize{14}Time (h)');
8 title(han,'\fontsize{16} With lsqcurvefit');
9

10 %Table
11 VarNames = {'Amino acids','Vmax (g/h)','Km (g/l)'};
12 Names = aaname';
13 T=table(Names,pall(:,1),pall(:,2),'VariableNames',VarNames);
14 writetable(T,'Parameters3.xls');

Kinetic function

In the following code there is a nested function (i.e. a function defined within another function).

The aim is to define the equation for the fitting, named rate (see the Michaelis-Menten-Monod

equation 4.1) and then solve it as a differential equation (kinetic fit mm2 ).

It starts with the initial values of concentration and biomass, and then, the parameters are

given to the rate function.

1 % Non−linear fitting of the Michaelis−Menten−Monod model
2

3 function C=kinetic fit mm2(theta,t)
4

5 %Initial concentration (g/l)
6 CS0 = theta(3);
7 %Initial biomass (g/l)
8 BM0 = 0.1295*0.74;
9

10 Species0 = [CS0 BM0];
11

12 %Differential equation system:
13 [T,Cv]=ode45(@(t,y) rate(t,y,theta), t, Species0);
14
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15 function ydot=rate(¬,y, theta)
16 ydot=zeros(2,1);
17 vmax=theta(1);
18 Km=theta(2);
19 Ci = theta(3);
20 BMi = theta(4);
21

22 %Michaelis−Menten−Monod equation:
23 ydot(1)=−vmax.*y(1)*(Ci + BMi − y(1))./(Km+y(1));
24

25 end
26

27 C=Cv(:,1:2);
28

29 end

Figure 4.1: Amino acids uptake by Pseudoalteromonas haloplanktis following the
degradation order found by Perrin et al., 2020 [24]. The fit method used was

lsqcurvefit by MATLAB.
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Amino acids Vmax (g/h) Km (g/l)

Glutamate 0,107969 0,013320
Glutamine 0,083979 0,002933
Arginine 0,088833 0,000671
Leucine 0,044154 0,000184

Asparagine 0,053598 0,001152
Aspartate 0,047202 0,000494

Proline 0,039771 0,000024
Valine 0,032828 0,000066

Isoleucine 0,038777 0,000241
Threonine 0,034756 0,000468

Amino acids Vmax (g/h) Km (g/l)

Alanine 0,024011 0,000030
Lysine 0,042071 0,000522
Glycine 0,021187 0,000034
Tyrosine 0,046507 0,000210

Phenylalanine 0,044644 0,000161
Serine 0,034223 0,001920

Methionine 0,017235 0,000030
Histidine 0,137301 0,323246

Tryptophan 0,279822 0,844227

Table 4.2: Maximum velocity and Michaelis constant for each amino acid obtained
with lsqcurvefit by MATLAB as the fitting method.

4.1.2 SIMPSA and SIMPLEXL

Main

The code starts as the previous one (lsqcurvefit), i.e. importing the experimental data of the

amino acids’ concentration values, the biomass data and the time vector. However, it is defined a

Data matrix with all of the aminoacids’ mean and the time vector. It is done this way in order to

be used in the objectiveFunction script.

1 clear all
2 close all
3

4 %%Load dat: aa−mean
5 file1 = 'Figure4A rep1.txt';
6 file2 = 'Figure4A rep2.txt';
7 delimiterIn = ',';
8 headerlinesIn = 1;
9 A = importdata(file1,delimiterIn,headerlinesIn);

10 B = importdata(file2,delimiterIn,headerlinesIn);
11

12 % Molecular weight (for data loading and then ordered by clusters)
13 MW = 1e−3*[117.151 131.17 131.17 119.1192 89.09 147.13 146.14 149.21 ...

132.12 133.11 146.19 75.07 115.13 181.19 155.1546 204.23 165.19 ...
105.09 174.2];

14 MWaa = 1e−3*[147.13 146.14 174.2 131.17 132.12 133.11 115.13 117.151 ...
131.17 119.1192 89.09 146.19 75.07 181.19 165.19 105.09 149.21 ...
155.1546 204.23];

15

16 %19 aa−mean (g/l)
17 val = (A.data(:,2)+B.data(:,2)).*MW(1)/2;
18 ile = (A.data(:,3)+B.data(:,3)).*MW(2)/2;
19 .
20 .
21 ser = (A.data(:,19)+B.data(:,19)).*MW(18)/2;
22 arg = (A.data(:,20)+B.data(:,20)).*MW(19)/2;
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23

24 %Error bar
25 valsd = std([A.data(:,2) B.data(:,2)],0,2).*MW(1);
26 ilesd = std([A.data(:,3),B.data(:,3)],0,2).*MW(2);
27 .
28 .
29 sersd = std([A.data(:,19),B.data(:,19)],0,2).*MW(18);
30 argsd = std([A.data(:,20),B.data(:,20)],0,2).*MW(19);
31

32 % OD mean
33 file3 = 'Figure4C.txt';
34 OD = importdata(file3,delimiterIn,headerlinesIn);
35 odm = (OD.data(:,2)+OD.data(:,3))/2;
36

37 %Biomass (g/l)
38 BMm = odm * 0.74;
39

40 %Time
41 vTime = A.data(:,1);
42

43 % This is the order by groups of aa
44 aa = {glu, gln, arg, leu, asn, asp, pro, val, ile, thr, ala, lys, gly, ...

tyr, phe, ser, met, his, trp};
45 aaname = ["Glutamate", "Glutamine", "Arginine", "Leucine", "Asparagine", ...

"Aspartate", "Proline", "Valine", "Isoleucine", "Threonine", ...
"Alanine", "Lysine", "Glycine", "Tyrosine", "Phenylalanine", ...
"Serine", "Methionine", "Histidine", "Tryptophan"];

46 err = {glusd, glnsd, argsd, leusd, asnsd, aspsd, prosd, valsd, ilesd, ...
thrsd, alasd, lyssd, glysd, tyrsd, phesd, sersd, metsd, hissd, trpsd};

47

48 %Data matrix
49 Data = [vTime glu gln arg leu asn asp pro val ile thr ala lys gly tyr phe ...

ser met his trp];

The fit was done three times for both methods. The first time it was done with these estimated

values for vmax and km:

1 %For SIMPSA:
2 vmax= [0.077516 0.073205 0.090023 0.044131 0.0508381 0.044456 0.037376 ...

0.031659 0.042409 0.036098 0.041137 0.041348 0.0248259 0.047499 ...
0.045926 0.027391 0.017013 0.010768 0.56459];

3 km= [0.004186 0.000048 0.000049 0.000419 0.0006 0.000063 0.000033 ...
0.000079 0.000221 0.000132 0.00021 0.000092 0.00078 0.00031 0.000184 ...
0.000046 0.000364 0.000959 1.523861];

4

5 %For SIMPLEX:
6 vmax= [0.199999990 0.197725481 0.198131475 0.157049833 0.0448949 ...

0.0449999 0.0378840682 0.036661369 0.036508738 0.022746 0.0326134321 ...
0.0436398755 0.008308 0.053724821 0.076912766 0.039141558 ...
0.0089995423 0.005943 0.56459];

7 km= [0.001518 0.000051 0.000053 0.0004916 0.00000599 0.000653 0.00002830 ...
0.000079 0.0003894 0.00002398 0.0000248 0.00009 0.00003 0.00003145 ...
0.000201 0.0007568 0.0002 0.0006 1.523861];

After the second time, the resulted parameters were used as estimated values for the third fit,

loading the data the same way it was loaded for the first method (lsqcurvefit).
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1 %% Initial guess for SIMPSA
2 file4 = readtable('ParametersSIMPSA2.xls','PreserveVariableNames',true);
3 vmax = table2array(file4(:,2))';
4 km = table2array(file4(:,3))';
5

6 %% Initial guess for SIMPLEXL
7 file4 = readtable('ParametersSIMPLEXL2.xls','PreserveVariableNames',true);
8 vmax = table2array(file4(:,2))';
9 km = table2array(file4(:,3))';

The table of zeros pall was build to be filled with the kinetic constants calculated by the

algorithms. Then the for loop starts with the inputs for the SIMPSA and SIMPLEX algorithms.

Those are the ModelParameter and the Data PC matrix that contains only the time column and

the amino acid of the k iteration. The inputs needed are the OPTIONS value for setting the cool-rate

value for the SIMPSA algorithm and an options vector for SIMPLEXL algorithm. In both cases,

the input function is objectiveFuntion.

After the algorithms were implemented solving the differential equations, the solutions of the

parameters calculated, saved in the parCal matrix, are used as an input for the odeSystem function,

which compare how distant the points obtained with those parameters are from the experimental

data (least square method).

Finally, at the end of the for loop, a specific graphic for each amino acid was plotted, saving

them in the same figure using the subplot function, and the parameters tested (in sol) were saved

in the pall matrix.

1 pall = zeros(19,2);
2

3 for k = 1:19
4 ModelParameters = [vmax(k) km(k)];
5 Data PC = [Data(:,1) Data(:,k+1)];
6

7 %For SIMPSA
8 OPTIONS = SIMPSASET('COOL RATE',0.8);
9

10 %For SIMPLEXL
11 options=foptions;
12 %1 = displays intermidiate results
13 options(1)=1;
14 %Precision required for the solution value to X
15 options(2)=.0001;
16 %Precision required for the value of the functional error to the solution
17 options(3)=.0001;
18 %Maximum number of iterations after which the search for the minimum stops
19 options(14)=1500;
20

21 % SIMPSA algorithm
22 [parCal,FVAL,EXITFLAG,OUTPUT] = ...

SIMPSA('objectiveFunction',ModelParameters,...
23 zeros(size(ModelParameters)),2*ones(size(ModelParameters)),OPTIONS,Data PC);
24
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25 % SIMPLEXL algorithm
26 [parCal,¬] = ...

SIMPLEXL('objectiveFunction',ModelParameters,options,[],Data PC);
27

28 %Testing the parameters calculated:
29 y0 = s0(k);
30 [time,sol] = ode45(@(t,y) odeSystem(t,y,parCal), vTime, y0);
31

32

33 %Plotting the results to experimental data
34 figure(1);
35 subplot(5,4,k)
36 plot(time,sol(:,1)./MWaa(k),'b'); title(aaname(k));
37 hold on
38 errorbar(time, Data PC(:,2)./MWaa(k),err{k}./MWaa(k),'.b');
39

40 %Collecting Vmax and Km parameters
41 format long
42 pall(k,:) = parCal(1:2);
43

44 end

At the end of the script, the image was customized with its correct axis (Fig. 4.2, Fig. 4.3) and

the table with the kinetic constants (parameters) was saved as a .xls file for each method (Table

4.3, Table 4.4).

1 %Naming the axis of the figure
2 han=axes(figure(1),'visible','off');
3 han.Title.Visible='on'; han.XLabel.Visible='on'; han.YLabel.Visible='on';
4 ylabel(han,'\fontsize{14}Concentration (mM)');
5 xlabel(han,'\fontsize{14}Time (h)');
6 %Titles for each method:
7 title('\fontsize{16}With SIMPSA');
8 title('\fontsize{16}With SIMPLEXL');
9

10 %Table
11 VarNames = {'Amino acids','Vmax (g/h)','Km (g/l)'};
12 Names = aaname(1:19)';
13 T=table(Names,pall(:,1),pall(:,2),'VariableNames',VarNames);
14 %Saving for each method:
15 writetable(T,'ParametersSIMPSA3.xls');
16 writetable(T,'ParametersSIMPLEXL3.xls');

It is important to know that this script is run in two separate times: once for the SIMPSA

method and an other time for the SIMPLEXL method. This is due to the amount of calculations

that are involved, and doing it all at once could be too slow.

In that sense, when running the script for the former algorithm, all lines setting parameters of

the latter algorithm must be commented.
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Ode System

This function has the Michaelis-Menten-Monod equation for the fitting, which is going to be

used by the objective function in order to solve it as a differential equation system. Here the initial

concentration and biomass are set, as well as the reaction parameters, i.e. the kinetic constants.

1 function ddy = odeSystem(¬,y,reactionParameters)
2

3 ddy=zeros(1,1);
4

5 %Initial concentration and biomass
6 Ci = 0.02754584;
7 BMi = 0.1295*0.74;
8

9 %vmax
10 vmax = reactionParameters(1);
11 %km
12 Km = reactionParameters(2);
13

14 %Michaelis−Menten−Monod equation
15 ddy(1)= −vmax.*y(1)*(Ci + BMi − y(1))./(Km+y(1));

Objective fuction

This function is the input function that is requested by the SIMPSA and SIMPLEXL methods.

It needs a Data matrix as an input, that was called Data PC in the main script. Using that input,

the time and concentration vectors were set, as well as the initial concentration value (y0), so the

ode45 function could be used.

After that, a figure of every try is plotted and shown with the shg command, so each fit try

could be seen. Once the solution of the parameters is calculated, they are send to a least squares

test, to defined if they are describing the experimental data in an accurate way.

1 function scarto = objectiveFunction(reactionParameters,Data)
2

3 reactionParameters=abs(reactionParameters);
4

5 %Setting the time and experimental data vectors
6 vTime = Data(:,1);
7 aa = Data(:,2);
8 %Initial concentration
9 y0 = aa(1);

10

11 [Time,sol] = ode45(@(t,y) odeSystem(t,y,reactionParameters), vTime, y0);
12

13 figure(2);
14 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]);
15 plot(vTime,sol,'k',vTime,aa,'ok','LineWidth', 2);
16 xlabel('Time(h)');

30



17 ylabel('Concentration (g/l)');
18

19 shg
20

21 %Least squares test
22

23 method=3;
24 switch method
25 case 1
26 scarto=(1/length(vTime))*sum((sol−aa).ˆ2+(sol−aa).ˆ2)/2;
27 case 2
28 scarto=(1/length(vTime))*sum((aa.*(aa−sol)).ˆ2)/2;
29 case 3
30 x1D=aa(2:length(aa));
31 x2D=[x1D;x1D(end)];
32 dx2D=x2D−aa;
33

34 scarto=(1/length(vTime))*sum((dx2D.*(aa−sol)).ˆ2);
35 end
36

37 end
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Amino acids Vmax (g/h) Km (g/l)

Glutamate 0,077516 0,004186
Glutamine 0,073350 0,000119
Arginine 0,090056 0,000038
Leucine 0,043012 0,000005

Asparagine 0,050838 0,000600
Aspartate 0,044456 0,0000634

Proline 0,037390 0,000028
Valine 0,031659 0,000079

Isoleucine 0,041124 0,001669
Threonine 0,034729 0,000984

Amino acids Vmax (g/h) Km (g/l)

Alanine 0,021529 0,000021
Lysine 0,041356 0,000017
Glycine 0,143405 0,069198
Tyrosine 0,047640 0,000003

Phenylalanine 0,045926 0,000184
Serine 0,027391 0,000046

Methionine 0,017013 0,000364
Histidine 0,010768 0,000959

Tryptophan 0,749563 1,982687

Table 4.3: Maximum velocity and Michaelis constant for each amino acid obtained
with SIMPSA as the fitting method.

Figure 4.2: Amino acids uptake by Pseudoalteromonas haloplanktis following the
degradation order found by Perrin et al., 2020 [24]. The fit method used was

SIMPSA.
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Amino acids Vmax (g/h) Km (g/l)

Glutamate 0,077516 0,004186
Glutamine 0,073205 0,000048
Arginine 0,090023 0,000049
Leucine 0,044131 0,000419

Asparagine 0,048381 0,000006
Aspartate 0,044456 0,000063

Proline 0,037376 0,000033
Valine 0,031659 0,000079

Isoleucine 0,037409 0,000021
Threonine 0,032098 0,000032

Amino acids Vmax (g/h) Km (g/l)

Alanine 0,021137 0,000021
Lysine 0,041348 0,000092
Glycine 0,018259 0,000058
Tyrosine 0,049499 0,000031

Phenylalanine 0,045926 0,000184
Serine 0,027391 0,000046

Methionine 0,017013 0,000364
Histidine 0,010768 0,000959

Tryptophan 6,84E+13 1,85E+14

Table 4.4: Maximum velocity and Michaelis constant for each amino acid obtained
with SIMPLEXL as the fitting method.

Figure 4.3: Amino acids uptake by Pseudoalteromonas haloplanktis following the
degradation order found by Perrin et al., 2020 [24]. The fit method used was

SIMPLEXL.
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4.1.3 Python: SciPy optimize

In this case, there is only one script, and the function is defined here. It starts by importing

the libraries needed. Then uploading the data and setting the molecular weight vector and the

parameters vectors (kinetic constants). However, the main difference with the other fitting methods

is that an offset is defined in order to prevent the function going to negative values.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 import pandas as pd
4 from scipy.integrate import odeint
5 from scipy.optimize import minimize
6

7 #Importing data
8 data = pd.read excel('data.xls')
9 data = data.values

10

11 name = ["Glutamate", "Glutamine", "Arginine", "Leucine", "Asparagine", ...
"Aspartate", "Proline", "Valine", "Isoleucine", "Threonine", ...
"Alanine", "Lysine", "Glycine", "Tyrosine", "Phenylalanine", ...
"Serine", "Methionine", "Histidine", "Tryptophan"];

12

13 #Molecular weight:
14 MWaa = 1e−3*np.array[147.13 146.14 174.2 131.17 132.12 133.11 115.13 ...

117.151 131.17 119.1192 89.09 146.19 75.07 181.19 165.19 105.09 ...
149.21 155.1546 204.23];

15

16 #Kinetic constants vectors to be filled:
17 vmax all = np.zeros(len(MWaa))
18 Km all = np.zeros(len(MWaa))
19 #Offset to prevent the functions to go bellow zero.
20 offset all = np.zeros(len(MWaa))

This method was used just one time given its efficiency, and the estimated values for the kinetic

constants were:

1 #Estimated values of the parameters.
2 vmax 0 vec = ...

np.array([0.077,0.074,0.088,0.044,0.054,0.048,0.041,0.037,0.042, ...
3 0.036,0.04,0.043,0.04,0.048, 0.047,0.030,1.102,0.452,1.007])
4 Km 0 vec = np.array([4.03e−03, 6.15e−04, 2.36e−04, 5.81e−05, 5.30e−04, ...

9.57e−05, 1.77e−05, 2.36e−04, 2.60e−04, 1.06e−04, 1e−05, 1.22e−05, ...
1e−05, 1.51e−05, 1.00e−04, 1.69e−06,5.00e−01, 2.02e−01, 4.36e−01])

The for loop starts in the following part of the code. A cFact factor is defined to be used for

plotting in mM instead of g/l. The initial concentration, the biomass and the time vector are set,

as well as the parameters Vmax and Km.
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1 for k in range(1,19):
2 cFact = 1/MWaa[k−1]
3

4 Ci = data[0,k]
5 BMi = 0.1295*0.74
6

7 #Time vector
8 tvec=np.arange(0,9,0.5)
9

10 offset 0 = data[−1,k]
11 vmax 0 = vmax 0 vec[k−1]
12 Km 0 = Km 0 vec[k−1]

Both of the needed functions are defined here. The first one solves the differential equation

system using the Michaelis-Menten-Monod equation (Eq. 4.1) and the second one returns the

difference between the calculated value and the experimental one, which will be minimize at the

time of the plotting.

Printing every graphic is done using an analog function of python, also named subplot (Fig. 4.4).

And it is here where the points to be graphed are choose according to which ones are closest to the

experimental data (minimize function). Finally, the parameters are saved in one matrix (Table 4.5).

1 #Diferential equation system:
2 def f aux(t, offset,vmax,Km):
3

4 #offset=0
5 y0 = Ci − offset # function evaluation at t=0
6 def ddy(y,t):
7

8 #Michaelis−Menten−Monod equation:
9 return −vmax*y*(Ci + BMi − y)/(Km + y)

10 return offset + odeint(ddy,y0,t)[:,0]
11

12 #Least squares function
13 def f aux 2(x):
14 offset,vmax,Km = x
15 return sum((f aux(tvec,offset,vmax,Km) − data[:,k])**2)
16

17 #Print(f aux 2([offset,vmax,Km]))
18 plt.subplot(5,4,k)
19 #Minimizing the error
20 sol = minimize(f aux 2,np.array([offset 0,vmax 0,Km 0]))
21 params = sol.x
22 solODE = f aux(tvec,*params)
23

24 plt.plot(tvec,solODE*cFact,'C0−')
25 plt.plot(data[:,0],data[:,k]*cFact,'C0.')
26 plt.ylim(0,0.2)
27 plt.title(name[k−1],fontsize=11)
28

29 #Printing the parameters for each amino acid
30 print(params)
31 offset all[k−1],vmax all[k−1],Km all[k−1]=params
32

33 #Saving the parameters
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34 print('\nd# vmax km')
35 for i in range(len(vmax all)):
36 print('{0:02d} {1:.5f} {2:.7f}'.format(i+1,vmax all[i],Km all[i]))
37

38 plt.tight layout(−0.1)
39 plt.show()

Figure 4.4: Amino acids uptake by Pseudoalteromonas haloplanktis following the
degradation order found by Perrin et al., 2020 [24]. Obtained with Python’s fitting

method.
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Amino acids Vmax (g/h) Km (g/l)

Glutamate 0,077010 0,004016
Glutamine 0,073660 0,000615
Arginine 0,086810 0,000185
Leucine 0,043690 0,000059

Asparagine 0,050790 0,000013
Aspartate 0,045220 0,000016

Proline 0,040830 0,000183
Valine 0,036340 0,000742

Isoleucine 0,041350 0,000998
Threonine 0,034790 0,000288

Amino acids Vmax (g/h) Km (g/l)

Alanine 0,045210 0,017377
Lysine 0,041690 0,000225
Glycine 0,024200 0,000740
Tyrosine 0,046900 0,000267

Phenylalanine 0,044410 0,000003
Serine 0,029470 0,000001

Methionine 1,166420 0,536755
Histidine 0,472550 0,217166

Tryptophan 1,007000 0,435997

Table 4.5: Maximum velocity and Michaelis constant for each amino acid obtained
with Python’s fitting method.

4.1.4 The fitting methods

The lsqcurvefit and SIMPSA method were compiled three times, looking forward to obtain better

results. After the third time, the values of Vmax and Km obtained are shown in the tables 4.2 and

4.3, respectively, and the trajectories of the fit are observed in the figures 4.1 and 4.2, respectively.

However, the SIMPLEXL method was compiled three times obtaining negative parameters the

last two times. Since it can not be explained from the biological point of view, the parameters

that were taken as an acceptable result were those obtained the first time (Table 4.4, Figure 4.3).

Python’s fitting method was compiled just one time, and the results obtained are shown in the

table 4.5, and figure 4.4.

It can be noticed that the fit obtained with the SIMPSA method for leucine, alanine, lysine and

tyrosine (Fig. 4.2), had the problem of taking negative concentration values, which may be related

with the absence of an offset, letting the values go further. The same problem can be observed

with the fit obtained with the SIMPLEXL method for asparagine (Fig. 4.3). It is worth to say

that neither of the kinetic constants corresponding the previous fittings for those amino acids were

chosen by the Akaike’s Information Criteria.

4.1.5 Assessing the quality of the fit: AIC

Obtaining the data from the fit

The code used here needs to load the kinetic constants calculated with each of the fits, then

with a for loop solve the differential equation and save each value. The code needs to be run four

times, once for each method, commenting the parts that correspond to the others.
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1 % Obtaining the data set for each fit
2

3 clear all
4 close all
5

6 %Setting the initial concentration and time vectors
7 s0 = [0.029426 0.029228 0.03484 0.026234 0.026424 0.026622 0.023026 ...

0.0234302 0.026234 0.02382384 0.017818 0.029238 0.015014 0.036238 ...
0.033038 0.021018 0.029842 0.031031 0.040846];

8 vTime = linspace(0,8.5,18)';
9

10 %Load the data and generate the point of the curve:
11

12 par = readtable('ParametersLSCURVE3.xls','PreserveVariableNames',true);
13 % par = readtable('ParametersSIMPSA3.xls','PreserveVariableNames',true);
14 % par = readtable('ParametersSIMPLEXL1.xls','PreserveVariableNames',true);
15 % par = readtable('ParametersPython.xls','PreserveVariableNames',true);
16 vmax = table2array(par(:,2))';
17 km = table2array(par(:,3))';
18

19 pall = zeros(18,19);
20

21 for k = 1:19
22 reactionParameters = [vmax(k) km(k)];
23 y0 = s0(k);
24 [Time,sol] = ode45(@(t,y) odeSystem(t,y,reactionParameters), vTime, y0);
25 pall(:,k) = sol(:,1);
26

27 end
28

29 %Saving all the values in the same matrix
30 varNames = ...

["Time","Glutamate","Glutamine","Arginine","Leucine","Asparagine",...
31 "Aspartate","Proline","Valine","Isoleucine","Threonine","Alanine","Lysine",...
32 "Glycine", "Tyrosine","Phenylalanine","Serine","Methionine","Histidine",...
33 "Tryptophan"];
34 T=table(vTime,pall(:,1),pall(:,2),pall(:,3),pall(:,4),pall(:,5),pall(:,6),...
35 pall(:,7),pall(:,8),pall(:,9),pall(:,10),pall(:,11),pall(:,12),pall(:,13),...
36 pall(:,14),pall(:,15),pall(:,16),pall(:,17),pall(:,18),pall(:,19),...
37 'VariableNames',varNames);
38 writetable(T,'Data parLSCURVE.xls');
39 % writetable(T,'Data parSIMPSA.xls');
40 % writetable(T,'Data parSIMPLEXL.xls');
41 % writetable(T,'Data parPy.xls');

Akaike’s Information Criterion

The method used to compare the four fitting methods was the Akaike’s Information Criterion,

which returned negative values, meaning how much information is lost depending on the method

used.

Since the aim of this code is to compare the experimental data to the results obtained from

the fitting methods, the first thing that has to be done is to upload all of them, and proceed with

a for loop to compare each amino acid’s value obtained with the parameters the fitting methods

gave as a result, to the experimental data.
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Finally, the results were saved as a .xls file and since the AIC estimates the relative amount

of information lost by a given model: the less information a model loses, the higher the quality of

that model, hence, the smaller the value is, the better (Table 4.6).

1 % Uploading experimental data
2 Data1 = readtable('ExperimentalData.xls','PreserveVariableNames',true);
3 Data = table2array(Data1);
4 vTime = Data(:,1);
5

6 % Names:
7 aaname = ["Glutamate", "Glutamine", "Arginine", "Leucine", "Asparagine", ...

"Aspartate", "Proline", "Valine", "Isoleucine", "Threonine", ...
"Alanine", "Lysine", "Glycine", "Tyrosine", "Phenylalanine", ...
"Serine", "Methionine", "Histidine", "Tryptophan"];

8

9 %Load the data to compare with:
10 datcalLS = readtable('Data parLSCURVE.xls','PreserveVariableNames',true);
11 datcalSIMPSA = readtable('Data parSIMPSA.xls','PreserveVariableNames',true);
12 datcalSIMPLEXL = ...

readtable('Data parSIMPLEXL.xls','PreserveVariableNames',true);
13 datcalPY = readtable('Data parPy.xls','PreserveVariableNames',true);
14

15 pall = zeros(18,4);
16

17 for k = 1:19
18

19 datLS = table2array(datcalLS(:,k+1));
20 datSIMPSA = table2array(datcalSIMPSA(:,k+1));
21 datSIMPLEXL = table2array(datcalSIMPLEXL(:,k+1));
22 datPy = table2array(datcalPY(:,k+1));
23

24 % AIC estimation: The lowest value corresponds to the better fit
25 z1 = iddata(Data(:,k+1),datLS,0.08);
26 z2 = iddata(Data(:,k+1),datSIMPSA,0.08);
27 z3 = iddata(Data(:,k+1),datSIMPLEXL,0.08);
28 z4 = iddata(Data(:,k+1),datPy,0.08);
29 np = 2;
30 sys1 = tfest(z1,np);
31 sys2 = tfest(z2,np);
32 sys3 = tfest(z3,np);
33 sys4 = tfest(z4,np);
34 aicLS = aic(sys1,'nAIC');
35 aicSIMPSA = aic(sys2,'nAIC');
36 aicSIMPLEXL = aic(sys3,'nAIC');
37 aicPy = aic(sys4,'nAIC');
38 pall(k,:) = [aicLS aicSIMPSA aicSIMPLEXL aicPy];
39

40 end
41

42 fitname = ["Aminoacids","lsqcurvefit","SIMPSA","SIMPLEXL","Python"];
43 Names = aaname(1:19)';
44 T=table(Names, pall(:,1), pall(:,2), pall(:,3), pall(:,4), ...

'VariableNames', fitname);
45 writetable(T,'CheckFit AIC.xls');

In the table 4.6, the values shown in bold are the ones that correspond to the models that lose

less information. Here it can be seen, for example, that SIMPLEXL method’s result for tryptophan
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is the one that loses the more information, which was expected since the kinetic constants were so

much higher (Table 4.4) than those obtained with the other methods.

Amino acids lsqcurvefit SIMPSA SIMPLEXL Python

Glutamate -11,642 -11,091 -11,684 -11,846
Glutamine -11,088 -9,620 -9,598 -11,299
Arginine -10,183 -9,747 -9,933 -10,255
Leucine -14,558 -11,080 -8,101 -12,289

Asparagine -11,984 -10,080 -10,950 -11,499
Aspartate -7,940 -11,967 -12,110 -10,360

Proline -10,243 -12,888 -10,026 -10,733
Valine -12,856 -9,738 -12,029 -7,615

Isoleucine -12,747 -11,417 -12,815 -12,836
Threonine -8,996 -11,662 -8,035 -13,128
Alanine -8,116 -12,554 -12,691 -10,731
Lysine -12,309 -8,649 -11,858 -12,358
Glycine -14,641 -11,770 -13,001 -14,876
Tyrosine -11,474 -11,190 -11,836 -9,862

Phenylalanine -9,027 -11,620 -9,671 -10,864
Serine -8,878 -7,778 -13,105 -9,716

Methionine -5,802 -12,099 -12,099 -7,604
Histidine -5,401 -9,978 -14,004 -9,521

Tryptophan -14,703 -15,113 -8,212 -11,934

Table 4.6: Results of the Akaike’s Information Criterion when comparing the four
fitting methods. Those who lose the less information are shown in bold.

After identifying the parameters that better described the amino acids’ behaviour, the kinetic

constants were put in a single file and then, using the molecular weight information, the values were

converted from g/h and g/l, to mmol/h and mmol/l, for Vmax and Km, respectively (Table 4.7).

It was done this way because DFBAlab code has a vector with the molecular weights, to convert

the units to g/h and g/l just in the cases needed.
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Values after AIC Values for DFBAlab
Amino Vmax Km Vmax Km

acids (g/h) (g/l) (mmol/h) (mmol/l)

Glutamate 0,077010 0,004016 0,523415 0,027292
Glutamine 0,073660 0,000615 0,504037 0,004207
Arginine 0,086810 0,000185 0,498335 0,001061
Leucine 0,044154 0,000184 0,336616 0,001405

Asparagine 0,053598 0,001152 0,405673 0,008723
Aspartate 0,044456 0,000063 0,333978 0,000475

Proline 0,037390 0,000028 0,324767 0,000241
Valine 0,032828 0,000066 0,280221 0,000562

Isoleucine 0,041350 0,000998 0,315240 0,007608
Threonine 0,034790 0,000288 0,292060 0,002421
Alanine 0,021137 0,000021 0,237260 0,000231
Lysine 0,041690 0,000225 0,285177 0,001537
Glycine 0,024200 0,000740 0,322366 0,009857
Tyrosine 0,049499 0,000031 0,273186 0,000171

Phenylalanine 0,045926 0,000184 0,278019 0,001114
Serine 0,027391 0,000046 0,260646 0,000439

Methionine 0,017013 0,000364 0,114023 0,002439
Histidine 0,010768 0,000959 0,069399 0,006180

Tryptophan 0,749563 1,982687 3,670192 9,708108

Table 4.7: Kinetic constants obtained from the best fitting methods and the
converted units, used for the simulation with DFBAlab.
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4.2 DFBAlab implementation

For the construction of a Dynamic Flux Balance Analysis model, once the kinetic parameters Vmax

and Km were obtained, the Dynamic Flux Balance Analysis laboratory code was implemented,

developed by Gomez et. al. [33]. The model used was iMF721, a gene-scale metabolic network

model of Pseudoalteromonas haloplanktis TAC125 developed by Fondi et. al. [20].

The use of this tool require the installation of COBRA Toolbox v. 3.0 [30] and a linear

program (LP) solver, such as Gurobi or CPLEX, the former was installed. The code contains

three key scripts: main.m, DRHS.m and RHS.m. In addition, there are two other files: evts.m

and SetModel.m, where the latter is the one that converts an SMBL file into a .mat file, that can

be used in MATLAB simulations [49], and sets some initial conditions.

Since the DFBAlab code was wrote by Jose A. Gómez [50], in this thesis there are going to

be specified only the lines that were changed in order to set the simulation of the genome-scale

metabolic network model used.

Set Model

Given that the genome-scale metabolic model iMF721 [20] is in SBML format, the function

readCBModel is used to transform it into a .mat file, a function of Cobra Toolbox.

Further more, the lower bound of the Schatz medium reactions (1g/lKH2PO4, 1g/lNH4NO3,

10 g/l NaCl, 0.2 g/lMgSO4 × 7H2O, 0.01 g/l FeSO4 × 7H2O, 0.01 g/l CaCl2 ×2H2O; [51]) are

set as infinite (-1000) because they are not suppose to be consumed in the time of the simulation,

following the experimental conditions set by Perrin et. al. [24]. The specific salt and its ID reaction

are shown on table 4.8, and they conform the RxnListExchangeSchatz cell array.

Salt Reactions ID
Mg EX cpd00254 e

HO7P2 EX cpd00012 e
Na EX cpd00971 e
H EX cpd00067 e
Ca EX cpd00063 e
O4S EX cpd00048 e

Salt Reactions ID
K EX cpd00205 e
Cl EX cpd00099 e

HO4P EX cpd00009 e
H4N EX cpd00013 e
Fe EX cpd10515 e
NO3 EX cpd00209 e

Table 4.8: Exchange reactions ID for each mineral in Schatz medium.

On the other hand, the lower bound of the amino acids uptake exchange reactions EX reactions

and specially the biomass exchange reaction ’EX Biomass e’ are set as 0, because from this point

of view, it is seen as a closed system.
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1 % Set Model
2

3 initCobraToolbox;
4 TAC125Model = readCbModel('tac125 model.xml');
5 FBAsolutionAsIs = optimizeCbModel(TAC125Model,'max');
6 GrowthAllEXOpen = FBAsolutionAsIs.f;
7 EX reactions= TAC125Model.rxns(¬cellfun(@isempty, ...

regexp(TAC125Model.rxns,'ˆEX ')));
8 NumberOfEXReactions = length(EX reactions);
9 %Setting lb of exchange reactions

10 TAC125Model = changeRxnBounds(TAC125Model, EX reactions, 0, 'l'); %−3.65
11 FBAsolutionNoEX = optimizeCbModel(TAC125Model,'max');
12 FBAsolutionAllClosed = FBAsolutionNoEX.f;
13 %Setting lb of Schatz medium exchange ractions
14 RxnListExchangeSchatz = { 'EX cpd00254 e', 'EX cpd00012 e', ...

'EX cpd00971 e', 'EX cpd00067 e', 'EX cpd00063 e', 'EX cpd00048 e', ...
'EX cpd00205 e', 'EX cpd00099 e', 'EX cpd00009 e', 'EX cpd00013 e', ...
'EX cpd10515 e', 'EX cpd00209 e' };

15 TAC125Model = changeRxnBounds(TAC125Model, RxnListExchangeSchatz, −1000, ...
'l');

16 % Setting lb of Biomass exchange reaction
17 TAC125Model = changeRxnBounds(TAC125Model, 'EX Biomass e', 0, 'l');
18 save('TAC125Model')

Main

This file sets the simulation, so it is important to specify the path of the Function’s file (it

comes with the DFBAlab folder), and the number of models used for the simulation, which in this

case is just one (iMF721, which has to be in .mat format). The INFO structure will have all the

information needed for the simulation, starting with the default bound.

For the amino acids’ uptake exchange reaction it was used the findRxnIDs command to find

each one of the IDs (Table 4.9), so it could be arrange as the exID array and consequently, put it

in the INFO structure.

Amino acids Reactions ID

Glutamate 1133
Glutamine 1167
Arginine 1163
Leucine 1155

Asparagine 1164
Aspartate 1154

Proline 1107
Valine 1162

Isoleucine 1158
Threonine 1169

Amino acids Reactions ID

Alanine 1153
Lysine 1148
Glycine 1118
Tyrosine 1103

Phenylalanine 1160
Serine 1094

Methionine 1159
Histidine 1166

Tryptophan 1161

Table 4.9: Exchange reactions ID for each amino acid.
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1 clear all
2 addpath('/DFBAlab/Functions');
3 INFO.nmodel = 1
4

5 %Loading model
6 load TAC125Model.mat
7 model{1} = TAC125Model;
8 DB(1) = 2000;
9 INFO.DB = DB;

10

11 % exID array
12 exID{1} = [1133, 1167, 1163, 1155, 1164, 1154, 1107, 1162, 1158, 1169, ...

1153, 1148, 1118, 1103, 1160, 1094, 1159, 1166, 1161];
13 INFO.exID = exID;

The next part of the code states the cost vectors, which are going to be maximized. The list

includes all the 19 amino acids, and it has three parameters. The first one, Ci(j).sense maximiza-

tion, Ci(j).rxns the reaction corresponding to this cost vector, Ci(j).wts is the weight of the cost

vector, i.e. if it adds or not.

1 minim = 1;
2 maxim = −1;
3

4 % Maximize growth
5 C{1}(1).sense = maxim;
6 C{1}(1).rxns = [1156];
7 C{1}(1).wts = [1];
8 % Maximize Glutamate
9 C{1}(2).sense = maxim;

10 C{1}(2).rxns = [1133];
11 C{1}(2).wts = [1];
12 % Maximize Glutamine
13 .
14 .
15 .
16 % Maximize Tryptophan
17 C{1}(20).sense = maxim;
18 C{1}(20).rxns = [1161];
19 C{1}(20).wts = [1];
20

21 INFO.C = C;

After setting the cost vectors, the initial conditions have to be specified. In this part, the units

used are mM (mmol/l) for all the amino acids, and g/l for the biomass. Since they are not used

in the same equation given (this time is used the Michaelis-Menten equation), the different units

are not an issue. The time interval is specified as well (h).

1 % Initial conditions
2 % Y1 = Volume (l)
3 % Y2 = Biomass TAC125 (g/l)
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4 % Y3 = Glutamate (mmol/l)
5 % Y4 = Glutamine (mmol/l)
6 % Y5 = Arginine (mmol/l)
7 % Y6 = Leucine (mmol/l)
8 % Y7 = Asparagine (mmol/l)
9 % Y8 = Aspartate (mmol/l)

10 % Y9 = Proline (mmol/l)
11 % Y10 = Valine (mmol/l)
12 % Y11 = Isoleucine (mmol/l)
13 % Y12 = Threonine (mmol/l)
14 % Y13 = Alanine (mmol/l)
15 % Y14 = Lysine (mmol/l)
16 % Y15 = Glycine (mmol/l)
17 % Y16 = Tyrosine (mmol/l)
18 % Y17 = Phenylalanine (mmol/l)
19 % Y18 = Serine (mmol/l)
20 % Y19 = Methionine (mmol/l)
21 % Y20 = Histidine (mmol/l)
22 % Y21 = Tryptophan (mmol/l)
23 % Y22 = Penalty
24 Y0 = [.1 0.096 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ...

0.2 0.2 0.2 0.2 0.2 0];
25

26 % Time of simulation (h)
27 tspan = [0,15];

It is important to select the LP solver, which in this case is Gurobi (1), and the LP tolerance,

which has to be larger than 10−9 [49]. In this case, the tolerance that worked was 10−8.

1 INFO.LPsolver = 1; % CPLEX = 0, Gurobi = 1.
2 INFO.tol = 1E−8;

The information of the fluxes regarding the biomass growth was saved in the GrowthRate.xls

file, and in the last part of the main script was loaded to be printed. The results of the simulation

were also plotted and the colors used correspond to those used in the Perrin et. al. [24] work. The

green one is for the first cluster of amino acids found, purple for the second, blue for the third and

orange for the fourth (Fig. 4.5).

1 %Growth rate data
2 data GR = readtable('GrowthRate.xls','PreserveVariableNames',true);
3 GR = table2array(data GR(:,1));
4 T GR = linspace(0,15,930)';
5

6 %Plotting all the results
7 figure(1)
8 %Biomass growth:
9 subplot(2,1,1);

10 h=plot(T,Y(:,2)/0.74,'−b');
11 set(gca,'fontsize',14)
12 ylabel('O.D.');
13 title('Growth curve','FontSize',18);
14 %Growth rate:
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15 axes('Position',[.7 .64 .18 .2])
16 box on
17 plot(T GR,GR,'−b')
18 ylabel('Growth Rate (hˆ−ˆ1)');
19 xlabel('Time (h)');
20 %Amino acid's uptake:
21 subplot(2,1,2);
22 h=plot(T,Y(:,3),'−−.', T,Y(:,4),'−−.', T,Y(:,5),'−−.', T,Y(:,6),'−−.', ...

T,Y(:,7),'−−.', T,Y(:,8),'−−.', T,Y(:,9),'−−.', T,Y(:,10),'−−.', ...
T,Y(:,11),'−−.', T,Y(:,12),'−−.', T,Y(:,13),'−−.', T,Y(:,14),'−−.', ...
T,Y(:,15),'−−.', T,Y(:,16),'−−.', T,Y(:,17),'−−.', T,Y(:,18),'−−.', ...
T,Y(:,19),'−−.', T,Y(:,20),'−−.', T,Y(:,21),'−−.', T,Y(:,22),'−.');

23 %Coloring
24 set(h(1),'linewidth',1.5); set(h(1),'Color',[0.4660 0.6740 0.1880]); %Glu
25 set(h(2),'linewidth',1.5); set(h(2),'Color',[0.4660 0.6740 0.1880]); %Gln
26 .
27 .
28 .
29 set(h(17),'linewidth',1.5); set(h(17),'Color',[0.8500 0.3250 0.0980]); %Met
30 set(h(18),'linewidth',1.5); set(h(18),'Color',[0.8500 0.3250 0.0980]); %His
31 set(h(19),'linewidth',1.5); set(h(19),'Color',[0.8500 0.3250 0.0980]); %Trp
32 set(h(20),'linewidth',1.5); set(h(20),'Color',[0 0 0]); %Penalty
33 legend('Glu (2)','Gln (1)','Arg−','Leu−','Asn (3)','Asp (4)','Pro ...

(6)','Val−','Ile (5)','Thr (7)','Ala (8)','Lys (11)','Gly (10)','Tyr ...
(13)','Phe (12)','Ser (9)','Met−','His−','Trp−','Penalty');

34 set(gca,'fontsize',14)
35 ylabel('Concentration (mM)');
36 xlabel('Time (h)','FontSize',15);
37 title('Degradation dynamics for 19 amino acids (Michaelis−Menten ...

eq.)','FontSize',17);

DRHS

The DRHS function takes time, the y vector and the INFO structure and returns the right hand

side vector of the ODE or DAE system [20]. The values are assign from the y vector, the feed rates

and the biomass feed concentrations are set to 0, as well as the mass transfer expressions, since it

is a closed system. The molecular weight and the substrate feed concentrations were specified.

1 function dy = DRHS(t, y, INFO)
2

3 % Y1 = Volume (l)
4 % Y2 = Biomass TAC125 (g/l)
5 % Y3 = Glutamate (mmol/l)
6 % .
7 % .
8 % .
9 % Y21 = Tryptophan (mmol/l)

10 % Y22 = Penalty
11

12 %Assign values from y vector
13 Vol = y(1);
14 X(1) = y(2);
15 for i=1:19
16 S(i) = y(2+i);
17 end

46



18

19 %Feed rates
20 Fin = 0;
21 Fout = 0;
22

23 % Biomass Feed concentrations
24 Xfeed(1) = 0;
25 Xfeed(2) = 0;
26

27 % Mass transfer expressions
28 MT(1) = 0;
29 .
30 .
31 .
32 MT(19) = 0;
33

34 %Molecular weight
35 MW(1) = 147.13/1000; %Glutamate
36 .
37 .
38 .
39 MW(19) = 204.23/1000; %Tryptophan
40

41 %Substrate feed concentrations
42 Sfeed(1) = 0;
43 .
44 .
45 .
46 Sfeed(19) = 0;

The second part of this script consists in the solveModel function, and the flux variable is a

matrix with rows corresponding to each model and columns corresponding to each cost vector.

Therefore, flux(i,j) corresponds to the optimal value of cost vector j and model i with the order

defined in ‘main.m’. In this simulation, i is always equal to 1, because it is done with just one

model, iMF721 [20, 49].

The penalty vector contains the objective function values of the LPs. If penalty(i)> 0, model i

corresponds to an infeasible LP. Otherwise, model i is feasible.

1 %% Update bounds and solve for fluxes
2 [flux,penalty] = solveModel(t,y,INFO);
3

4 %Fluxes
5 v(1,1) = flux(1,1); %Biomass
6 v(1,2) = flux(1,2); %Glutamate
7 .
8 .
9 .

10 v(1,20) = flux(1,20); %Triptophan
11

12 %% Dynamics
13 dy = zeros(22,1); %A column vector
14 dy(1) = Fin−Fout; %Volume
15 dy(2) = flux(1,1)*X(1) + (Xfeed(1)*Fin − X(1)*Fout)/y(1); %Biomass
16 for i = 1:19 %For each amino acid
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17 dy(i+2) = v(1,i+1)*MW(i)*X(1) + MT(i) + (Sfeed(i)*Fin − S(i)*Fout)/y(1);
18 end
19 dy(22) = penalty(1);
20 end

RHS

Finally, the RHS function takes time, the y vector and the INFO structure as inputs and returns

two matrices containing the upper and lower bounds (ub and lb, respectively) for the fluxes specified

in the exID cell in ‘main.m’. This ub and lb are functions of time and states (y values).

If the lb is negative, then it is defined as 0, otherwise it is defined by the Michaelis-Menten

equation (4.2), where the kinetic constants Vmax and Km are in mmol/h and mmol/l instead of

g/h and g/l, respectively. The ub is always set as 0.

dS

dt
=
−Vmax ∗ S
(Km + S)

(4.2)

1 function [lb,ub] = RHS( t,y,INFO )
2

3 % Y1 = Volume (l)
4 % Y2 = Biomass TAC125 (g/l)
5 % Y3 = Glutamate (mmol/l)
6 % .
7 % .
8 % .
9 % Y21 = Tryptophan (mmol/l)

10 % Y22 = Penalty
11

12 % Vmax in mmol/h e Km in mmol/l
13

14 % Glutamate
15 if (y(3)<0)
16 lb(1,1) = 0;
17 else
18 lb(1,1) = −0.523415.*y(3)./(0.027292+y(3));
19 end
20 ub(1,1) = 0;
21

22 %Glutamine
23 .
24 .
25 .
26

27 % Tryptophan
28 if (y(21)<0)
29 lb(1,19) = 0;
30 else
31 lb(1,19) = −3.670192.*y(21)./(9.708108+y(21));
32 end
33 ub(1,19) = 0;
34

35 end
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The simulation performed by DFBAlab showed that the amino acids’ behaviour was similar to

the one observed experimentally. The order of the clusters of amino acids was the same except

for isoleucine, which belongs to the third cluster (blue) and its concentration diminishes first than

that of proline, which belongs to the second cluster (Table 4.10).

It is important to notice that the model is not sensible to arginine (first cluster), leucine (second

cluster), valine (third cluster), and all the amino acids belonging to the fourth cluster: methionine,

histidine and tryptophan. However, neither of the last three were completely used as a carbon

source in vitro [24].

On the other hand, there is one behaviour observed with the bacterial growth in vitro that is

not present in the simulation: the two lags of the growth rate, and infact, the in silico growth

curve seems to be a smooth one (Fig. 4.5a and 4.6a).

Figure 4.5: a. Biomass growth curve in optical density, and growth rate. b. Amino
acids uptake by Pseudoalteromonas haloplanktis.

As reported in previous studies of Pseudoalteromonas haloplanktis TAC125, glutamate ap-

peared to be the most important amino acid controlling the growth. It was observed that it was
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Figure 4.6: Experimental data obtained from Perrin et. al. [24]. a Biomass growth
curve in optical density, and growth rate. b Amino acids uptake by

Pseudoalteromonas haloplanktis, green, violet, blue and orange correspond to cluster
one, two, three and four, respectively.

consumed with the highest rate compared to all the other analyzed amino acids, and when it was

exhausted, the growth declined immediately [9]. This growth decline is what can be observed in

Perrin’s work (Fig. 4.6a) but not in the in silico experiment (Fig. 4.5a). The results of this thesis

agree with the preference of PhTAC125 for glutamate (Table 4.10), following glutamine, which was

not included in Wilmes’ study [9]. However, the dynamic model might not be describing the high

uptake rate that is shown in vitro, hence further work needs to be done to address this problem.

Order Amino acids Time (h)
1 Glutamine 6,94
2 Glutamate 8,00
3 Asparagine 8,07
4 Aspartate 8,08
5 Isoleucine 8,17
6 Proline 8,60
7 Threonine 9,00
8 Alanine 9,07
9 Serine 9,80
10 Glycine 11,50

Order Amino acids Time (h)
11 Lysine -
12 Phenylalanine -
13 Tyrosine -
- Arginine -
- Leucine -
- Valine -
- Methionine -
- Histidine -
- Tryptophan -

Table 4.10: Order of amino acids uptake and the specific time in which it goes to
zero.
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4.3 Application of the dynamic model

Glutamate and Gluconate

To study how Pseudoalteromonas haloplanktis TAC125 uses as carbon sources gluconate and

glutamate in Schatz medium, the utilization rate was experimentally calculated. These results

were used to obtain the kinetic constants (Vmax and Km) that could describe glutamate’s and

gluconate’s behaviour the better, in order to perform a simulation with DFBAlab.

The three methods used (lsqcurvefit, SIMPSA and SIMPLEXL) gave different results after

being compiled three times, and those from the third one were take into account (Table 4.11).

Then, they were compared using the Akaike’s Information Criterion (Table 4.12), resulting that

the lsqcurvefit method lost the less information for glutamate, and the SIMPLEXL method for

gluconate (Fig. 4.7). The molecular weight of each acid was used in order to obtain the units

needed by DFBAlab code (MWglu=147,13 g/mol and MWgluc=196,16 g/mol), and the initial

values of the biomass and the acids where those used for the experiment, so the simulation could

be properly analyzed. The kinetic constants used for the code were as it follows:

For Glutamate: Vmax = 0, 921517 mmol/h and Km = 0, 000070 mM.

For Gluconate: Vmax = 1, 215330 mmol/h and Km = 0, 000333 mM.

Glutamate Gluconate
Fitting Vmax Km Vmax Km

method (g/h) (g/l) (g/h) (g/l)

lsqcurvefit 0,135583 0,000010 0,242051 0,000018
SIMPSA 0,098171 0,000021 0,238394 0,000000

SIMPLEXL 0,098308 0,006553 0,238399 0,000065

Table 4.11: Kinetic constants obtained using lsqcurvefit, SIMPSA and SIMPLEXL
as the three fitting methods.

Acids lsqcurvefit SIMPSA SIMPLEXL

Glutamate -4,151601 -3,603616 -3,603254
Gluconate -1,962716 -1,723312 -1,994047

Table 4.12: Results of Akaike’s Information Criterion when comparing the three
fitting methods. Those who lose the less information are shown in bold.

Once the kinetic constants were used to run the simulation, the biomass growth was 18% higher

than the one experimentally obained (1,83 O.D. and 1,55 O.D., respectively; see table 4.13 and
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fig. 4.8). However, the degradation dynamics of both glutamate and gluconate were slower than

expected. Experimentally, PhTAC125 consumed 2,6 mM of glutamate and 5,0 mM of gluconate,

while in the simulation, it consumed 0,8 mM of glutamate and 1,5 mM of gluconate. It took 12

hours for the bacteria to consume the expected amount of glutamate (2,6 mM) and 12,3 hours for

gluconate. These values are indicated in figure 4.8.

Figure 4.7: Glutamate and gluconate uptake by Pseudoalteromonas haloplanktis.

Recombinant protein: CDKL5

Pseudoalteromonas haloplanktis TAC125 was experimentally used as an expression platform to

assess the production of a recombinant protein (CDKL5). Studies in cell and animal models have

shown that the X-linked serine/threonine kinase, cyclin-dependent kinase-like 5, is important for

neurite outgrowth and dendritic spine development as well as for functional neuronal plasticity. It

has also been implicated as an important regulator of cellular responses to oxidative stress [53].
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Hence, a CDKL5 deficiency, caused by dominantly acting loss-of-function variants in the X-linked

gene, could lead to neurological diseases such as early-onset epileptic encephalopathies [52] [54].

The expression of CDKL5 was done through the use of a plasmid and IPTG (isopropyl-β-D-

thiogalactopyranoside) as an inductor of the lac operon’s promoter, which triggered the transcrip-

tion of the wanted protein. The experiment had two different setups, one where IPTG was used

to perform the induction of the protein, an one were it was not present, being the wild type.

In order to perform a simulation of this experimental setup, the SetModel.m script was updated

with the reaction of the protein with the addReaction command. This was done following the

stoichiometric equation that corresponds to the protein production. Then, it was added as an

exchange reaction, and the growth was set. The medium was as in the previous experiments

(Schatz), with the addition of gluconate and glutamate, but since the concentrations were much

higher than they were in the previous experiment (51 mM and 68 mM, respectively), it was not

necessary setting a limit before eight hours. The reactions ID were EX cpd00222 e for gluconate,

EX cpd00223 e for glutamate and 1326 for the protein.

1 % Set Model
2

3 % initCobraToolbox;
4 changeCobraSolver('mosek');
5 TAC125Model = readCbModel('tac125 model.xml');
6 %TAC125Model = checkCobraModelUnique(TAC125Model, 'T')
7 FBAsolutionAsIs = optimizeCbModel(TAC125Model,'max');
8 GrowthAllEXOpen = FBAsolutionAsIs.f;
9 %% Close ex reactions

10 EX reactions= TAC125Model.rxns(¬cellfun(@isempty, ...
regexp(TAC125Model.rxns,'ˆEX ')));

11 NumberOfEXReactions = length(EX reactions);
12 TAC125Model = changeRxnBounds(TAC125Model, EX reactions, 0, 'l');
13 FBAsolutionNoEX = optimizeCbModel(TAC125Model,'max');
14 FBAsolutionAllClosed = FBAsolutionNoEX.f;
15 %% Medium
16 RxnListExchangeSchatz = { 'EX cpd00254 e' , 'EX cpd00012 e' , ...

'EX cpd00971 e' , 'EX cpd00067 e' , 'EX cpd00063 e' , 'EX cpd00048 e' ...
, 'EX cpd00205 e' , 'EX cpd00099 e' , 'EX cpd00009 e' , ...
'EX cpd00013 e' , 'EX cpd10515 e', 'EX cpd00209 e' };

17 TAC125Model = changeRxnBounds(TAC125Model, RxnListExchangeSchatz, −1000, ...
'l');

18 TAC125Model = changeRxnBounds(TAC125Model, 'EX Biomass e', 0, 'l');
19 RxnExchangeGlcn Glu = {'EX cpd00222 e' , 'EX cpd00023 e'};
20 TAC125Model = changeRxnBounds(TAC125Model, RxnExchangeGlcn Glu, ...

[−0.665937670858393 −0.346287588846364], 'l');
21 %% Protein Reaction
22 TAC125Model = addReaction(TAC125Model, 'CDKL5', ' 0.426 cpd00052[c] + ...

0.574 ...
23 cpd00062[c] + 59 cpd00035[c] + 6 cpd00084[c] + 63 cpd00041[c] + ...
24 76 cpd00023[c] + 32 cpd00066[c] + 72 cpd00033[c] + 49 cpd00119[c] + ...
25 39 cpd00322[c] + 84 cpd00039[c] + 101 cpd00107[c] + 20 cpd00060[c] + ...
26 59 cpd00132[c] + 80 cpd00129[c] + 53 cpd00053[c] + 76 cpd00051[c] + ...
27 140 cpd00054[c] + 56 cpd00161[c] + 41 cpd00156[c] + 6 cpd00065[c] + ...
28 32 cpd00069[c] + 2288.574 cpd00002[c] + 2286.426 cpd00038[c] ...
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29 −> 0.01 cdkl5[c] + 2288 cpd00018[c] + 2286 cpd00031[c] + 4572 cpd00009[c]');
30 % Optimize 'EX cdkl5[c]' for protein production
31 TAC125Model = addExchangeRxn(TAC125Model, 'cdkl5[c]' , 0, 1000);
32 % for cdkl5 prodution,set to biomass reaction the follows constraint
33 MAXgrowth rate =optimizeCbModel(TAC125Model);
34 MAXgrowth rate = MAXgrowth rate.f;
35 TAC125Model = changeRxnBounds(TAC125Model, 'RXNbiomass', ...

MAXgrowth rate*0.74, 'b');
36

37 save('TAC125Model')

There were two main changes in the main.m and RHS.m scripts in order to produce the protein:

• In the main.m script: the order of the lexicographic optimization was changed, letting the

simulation optimized the protein production first, and then the biomass growth; and the

initial concentration of the protein production was not zero because given that the DFBAlab

code had the production equation multiplied by it, it would not show any protein production,

thus the initial concentration was set to 10−5.

• In the RHS.m script: the lower bound for the protein optimization was set to zero, while the

upper bound to infinite, so it could grow freely.

Finally, the DFBAlab code was used to optimize only the biomass, so it could be compared

with the wild type experiment, i.e. when the inductor was not used and Pseudoalteromonas

haloplanktis grew without producing the recombinant protein. This way, the growth difference

could be analyzed and compared with the experimental data (Fig. 4.9).

It can be noticed that the biomass growth is lower when the bacteria is producing the protein,

it grows 23,4% less when the bacteria produces the recombinant protein CDKL5 (Fig. 4.9a). It is

interesting to see that in both cases (IPTG and wild type) the simulation gave lower values than

expected, which were up to 3,5 O.D. for the wild type and 2,6 O.D. when producing the protein

(table 4.14), however the behavior of the decrease in growth when the protein is being produced

was maintained, being 25,7% for experimental data. When talking about the protein production,

there was a 35% of increase, which corresponds to the production rate (Fig. 4.9b).

Once again, the dynamic model provided a qualitative description of the experiments.
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Time Biomass Glutamate Gluconate
(h) (O.D.) (mM) (mM)

0 0,22 33,9 25,4
2 0,34 33,9 25,1
4 0,48 33,4 24,7
6 1,02 33,1 22,6
8 1,55 31,3 20,4

Table 4.13: Experimental results of biomass growth and the uptake of glutamate
and gluconate.

Figure 4.8: a. Biomass growth curve, the optical density predicted at hour eight is
indicated. b. Glutamate and gluconate uptake by Pseudoalteromonas haloplanktis.

For each acid, it is indicated the concentration after eight hours, and the time it
took to reach the final concentrations experimentally obtained (see table 4.13).
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Time Experiment Simulation
(h) WT CDKL5 WT CDKL5
0 0,9 0,9 0,9 0,9
4 2,0 1,8 1,6 1,4
8 3,5 2,6 2,6 1,9

Table 4.14: Experimental and simulation results of biomass growth (optical density)
for the wild type and when the protein is being produced

(WT = wild type, CDKL5 = inductor of transcription, IPTG, is present).

Figure 4.9: a. Biomass growth curve for P. haloplanktis wild type (dark blue) and
producing the protein CDKL5 (light blue), the percentage of growth difference at

hour eight is indicated. b. Protein production.
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Chapter 5

Conclusions

The realization of a dynamic genome-scale metabolic model for Pseudoalteromonas haloplanktis

TAC125 required several steps in order to obtain the best kinetic constants for the model to work

correctly.

In this thesis, a broad and reliable method of fitting data was developed using several fitting

algorithms and their subsequently comparison to evaluate how well the information experimentally

obtained was conserved and described. From this analysis, it cannot be chosen just one good

method to use. Instead, the use of at least two of them and then do the comparison is encouraged.

It is worth to say that after testing four statistical methods, Akaike’s Information Criterion (AIC)

was the best option to carry out the foretold comparison.

Furthermore, the DFBAlab code was adapted to be used for the study of the dynamics of P.

haloplanktis growing in a complex medium. This model gave results that are qualitatively similar

to the experimental observations made by Perrin et al. [24], however, these in silico experiments

gave the possibility to analyzed the behavior of each amino acid separately, instead of by clusters.

Yet, more work has to be done in order to explain why this model did not show the lags in growth

rate after the exhaustion of glutamine and glutamate (cluster one), and consecutively the one of

asparagine, aspartate, isoleucine and proline (cluster two-three).

Additionally, when the model was applied for the study of the production of recombinant

proteins, in particular CDKL5, the first step was to analyze the dynamics of the bacteria growing

in a different medium, composed only by glutamate and gluconate instead of 19 amino acids. The

model described the system with some shortcomings, giving a broad qualitative perspective.

The second step of the study of the production of CDKL5 gave once again qualitatively similar

results to those of the experiment. For example, it could be well determined the reduction of

57



the biomass growth when the bacteria is producing the recombinant protein. Still, the model

was not able to show how the production of the protein is being affected by the decrease of the

biomass, this is due to the equation used by the model that describe it, since it is based only in

the production rate previously calculated. The predictions could be significantly improved if the

amount of experimental data were larger.

All in all, it can be concluded that the realization of the dynamic genome-scale metabolic model

was succesfully performed even when the results are mostly qualitative. The model is able to

describe the metabolic dynamics of P. haloplanktis, qualitatively matching previous experimental

data. Nonetheless, more work needs to be done in order to increase its robustness.
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Philippe N. Bertin, Frankie Cheung, Stéphane Cruveiller, Salvino D’Amico, Angela Duilio,

Gang Fang, Georges Feller, Christine Ho, Sophie Mangenot, Gennaro Marino, Johan Nils-

son, Ermenegilda Parrilli, Eduardo P.C. Rocha, Zoé Rouy, Agnieszka Sekowska, Maria Luisa
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