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Bacterial roommates
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Bacterial roommates
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Bacterial roommates
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Microbes matter

Microbes are a lot!
They are (almost) everywhere
They do a lot of things

@ Host genome integration - .
(Hologenome)

Biogeochemical cycles Useful compounds
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« Who is there?

* How are they
influencing each
other?

- What are they
doing?

- How fast are they
growing?
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How can we model such
complex interactions?
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Community profiling

Community sampling
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Community profiling

Community sampling

S = n° taxa

How can we use
quantitative information
to infer community
structure?
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Machine Learning
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Machine Learning

e All nodes (taxa) are predicted
using all other nodes in the
network

e The effect of each predictor is
estimated using root mean
squared error

A(RMSE) when o
node 2 is not used odes
in predicting node 1 (
- @) g
RV — dyy  _ dy




Machine Learning

e All nodes (taxa) are predicted
using all other nodes in the
network

e The effect of each predictor is
estimated using root mean
squared error

 Nodes are ranked according
to their prediction power
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All nodes (taxa) are predicted
using all other nodes in the
network

The effect of each predictor is
estimated using root mean
squared error

Nodes are ranked according
to their prediction power

The system is optimised using
genetic algorithm

Machine Learning

Directed Acyclic Graph
DAG




Machine Learning

_ Starting from this node
All nodes (taxa) are predicted 0 J
using all other nodes in the

network

The effect of each predictor is
estimated using root mean
squared error

Nodes are ranked according
to their prediction power

The system is optimised using
genetic algorithm



All nodes (taxa) are predicted
using all other nodes in the
network

The effect of each predictor is
estimated using root mean
squared error

Nodes are ranked according
to their prediction power

The system is optimised using
genetic algorithm

Machine Learning

Starting from this node

All other nodes can be
predicted
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Preliminary results

R2 value ranging from 0.65 to 1 (except for sp7)

Thaiss et al 2016 - Persistent microbiome alterations modulate the rate of post-dieting weight regain



What about
metabolism?



Community modulation
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Community modulation

Not predicted by
the model
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Community modulation
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* Nutrient effect simulation
« Effect of antibiotic molecules
- Changes in metabolic assets
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* Nutrient effect simulation
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Community modulation

* Nutrient effect simulation
. Effect of antibiotic molecules < Biomass = f(A) = u(h™)
- Changes in metabolic assets Coverage =n

reads

Coverage = f(Biomass)
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Prokaryotic DNA replication

Prokaryotes Eukaryotes
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Prokaryotic DNA replication

Prokaryotes
@ @ @ origin of replication

During stationary phase
coverage is evenly
distributed along the
entire genome l




Prokaryotic DNA replication

Prokaryotes

origin of replication

During exponential phase
coverage increases near
the origin of replication 1
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Prokaryotic DNA replication

Prokaryotes
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During exponential phase
coverage increases near
the origin of replication
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Prokaryotic DNA replication
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PTR and Growth rate

Growing bacterial population
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PTR and Growth rate

Growing bacterial population

e PTR can be inferred from the
same data used for
community profiling
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PTR and Growth rate

Growing bacterial population

e PTR can be inferred from the
same data used for
community profiling

e Reference complete genome
must be available
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PTR and Growth rate

e PTR can be inferred from the
same data used for
community profiling

e Reference complete genome
must be available

e PTR and Growth rate are
highly correlated
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PTR and Growth rate

PTR can be inferred from the
same data used for
community profiling

Reference complete genome
must be available

PTR and Growth rate are
highly correlated

We need to find a relation
between different growth rate
indexes, PTR and coverage
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Other preliminary results

In two different conditions (NC and HFD) PTR and
growth rate seem to be correlated
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Questions, suggestions, and
collaborations are welcome



