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Microbes matter
Microbes are a lot! 

They are (almost) everywhere 
They do a lot of things

Biogeochemical cycles Useful compounds

Host genome integration 
(Hologenome)
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How can we model such 
complex interactions?
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1 2 3 N
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Taxonomic profiling
target gene (taxonomic marker) 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How can we use 
quantitative information 

to infer community 
structure?

S = n° taxa
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Starting from this node

All other nodes can be 
predicted



Preliminary results
R2 value ranging from 0.65 to 1 (except for sp7)

Thaiss et al 2016 - Persistent microbiome alterations modulate the rate of post-dieting weight regain



What about 
metabolism?
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Community modulation

• Nutrient effect simulation

• Effect of antibiotic molecules

• Changes in metabolic assets

B C

D

A

Coverage = f(Biomass)

Biomass = f(A) = μ(h−1)
Coverage = nreads



Growth rates estimation from 
metagenomes

Korem et al 2015 - Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples
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During stationary phase 
coverage is evenly 
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entire genome
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During exponential phase 
coverage increases near 
the origin of replication

PTR =
2ori

2ter

= coverage close to the origin of replication

= coverage close to the termination
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PTR and Growth rate
• PTR can be inferred from the 

same data used for 
community profiling


• Reference complete genome 
must be available


• PTR and Growth rate are 
highly correlated


• We need to find a relation 
between different growth rate 
indexes, PTR and coverage
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Questions, suggestions, and 
collaborations are welcome


